

BIOENG-320

Synthetic Biology

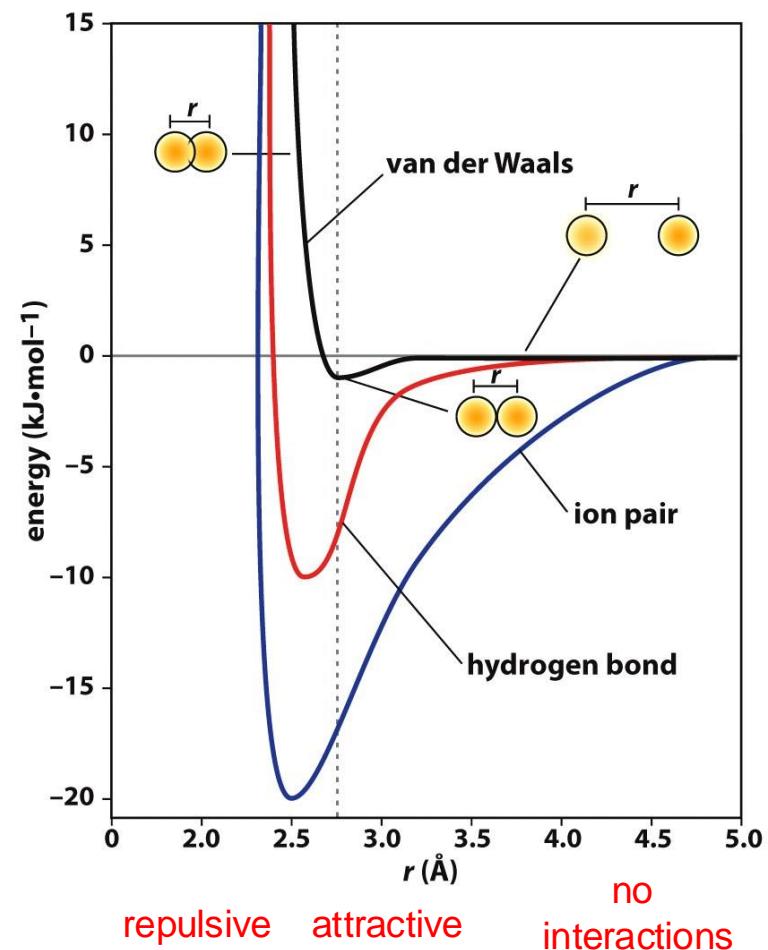
Protein design Lecture 3
March 10, 2025

Design of protein binding

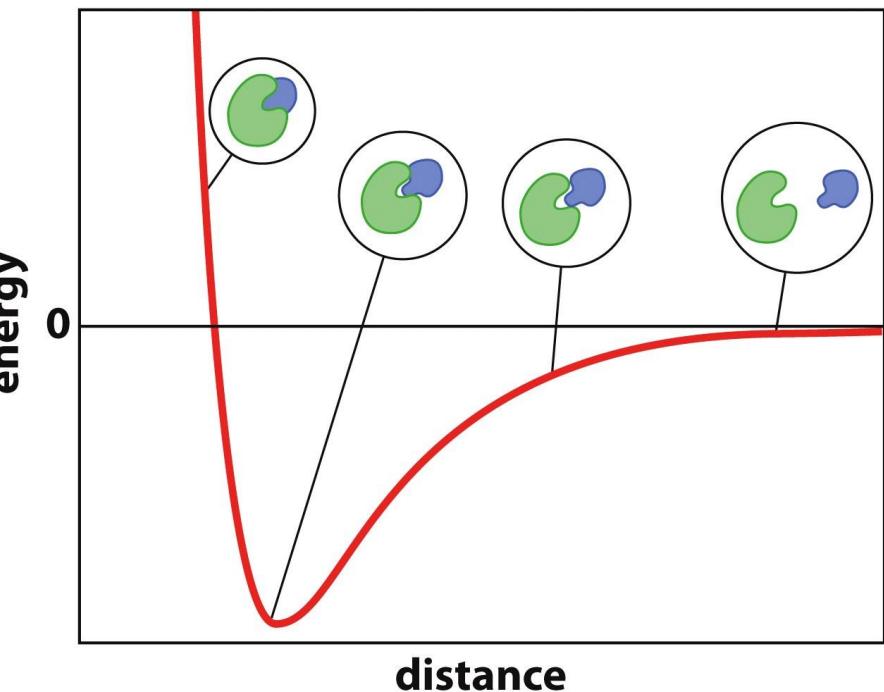
Patrick Barth
EPFL

Protein Design – the binding problem

Atomic interactions

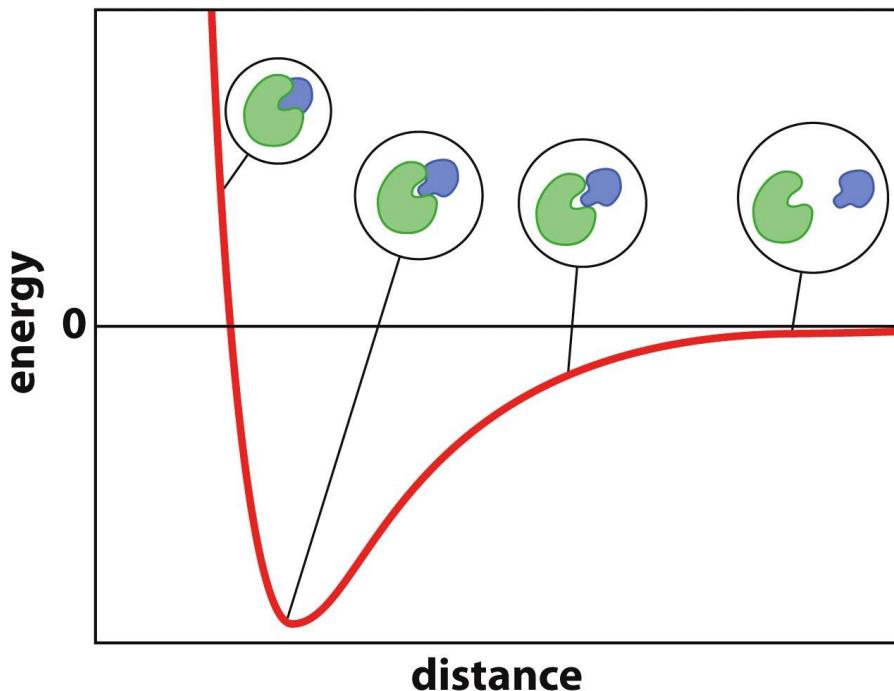


Protein-ligand interactions



Protein Design – the binding problem

Protein-ligand interactions



Similar forces than during protein folding:

1. Desolvation of 2 protein surfaces
2. Creation of hydrophobic and polar interactions at the binding interface

Balance between 1 and 2 will dictate the strength of binding

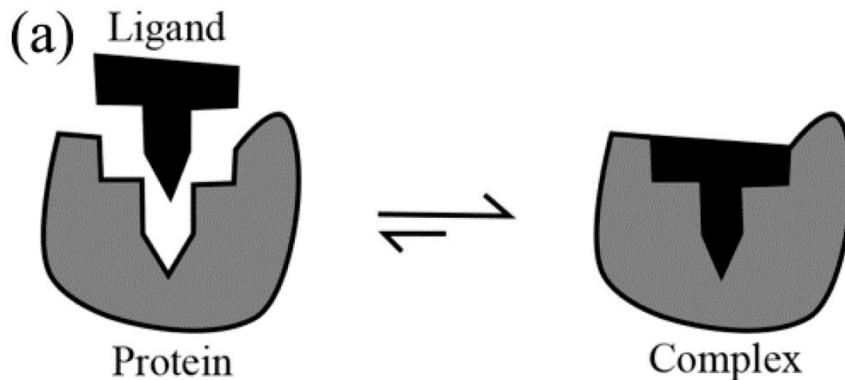
→ Protein surface complementarity and surface areas are key!

Buried cavity

Flat binding surface

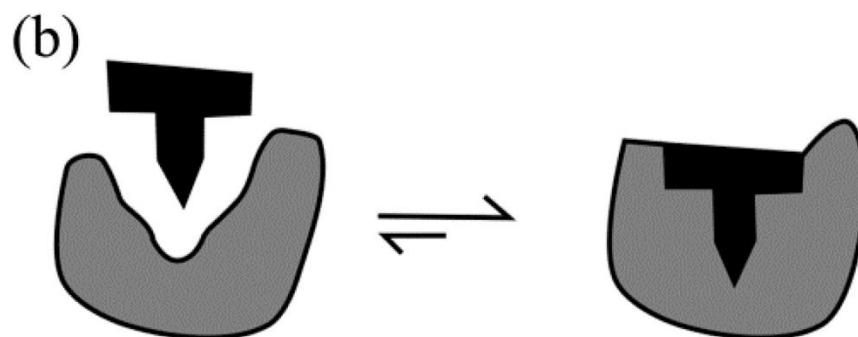
Protein binding – a conformational flexibility problem

Lock and key



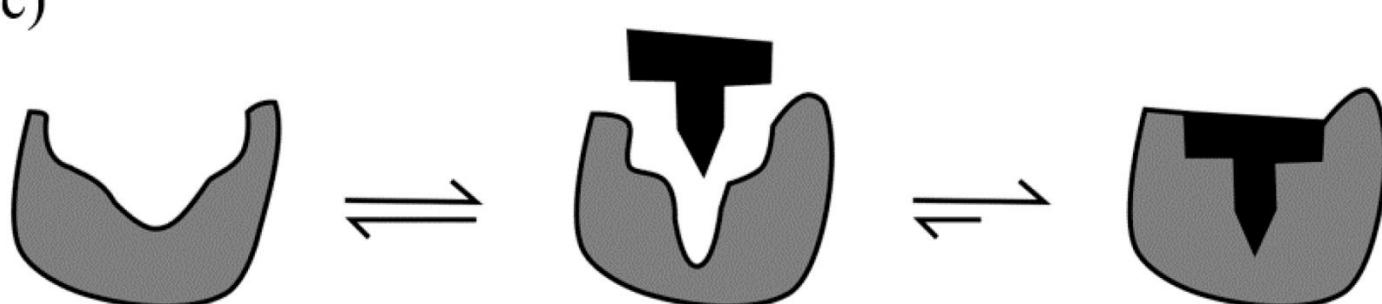
Rigid body
conformational
degrees
of freedom

Induced fit



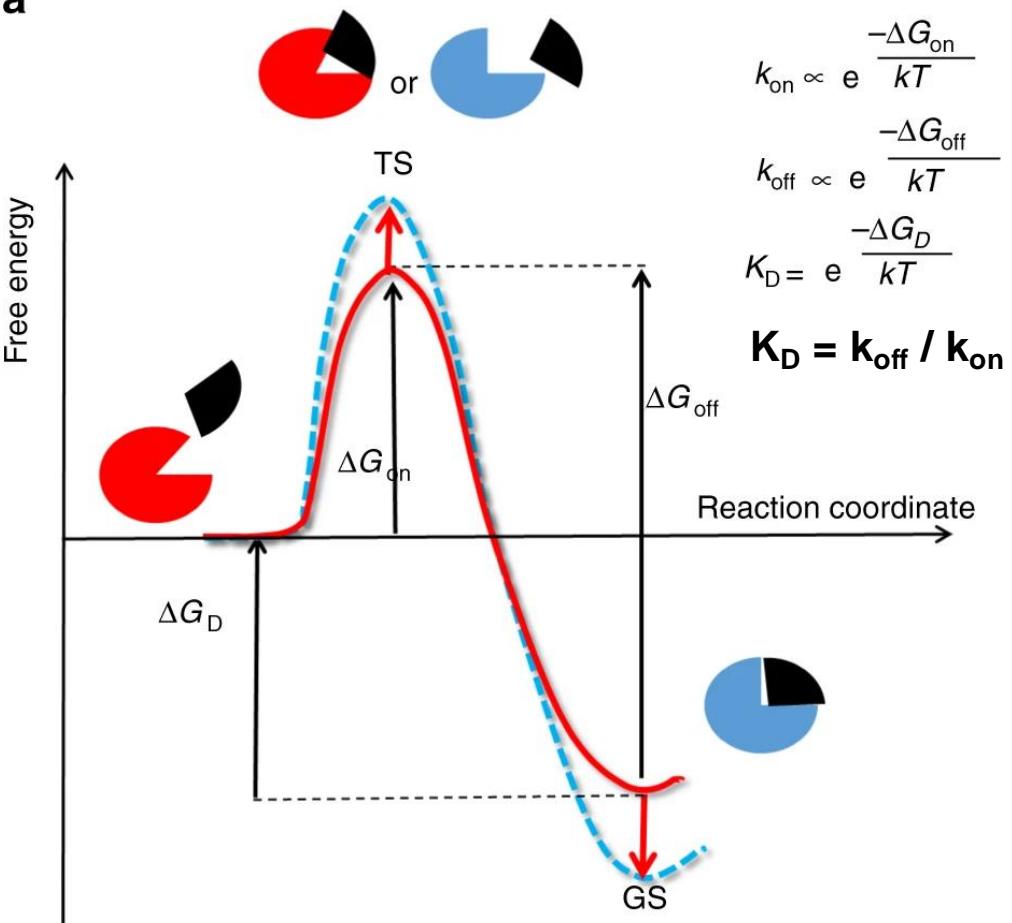
Rigid body + intraprotein
conformational
degrees
of freedom

Conformational
selection

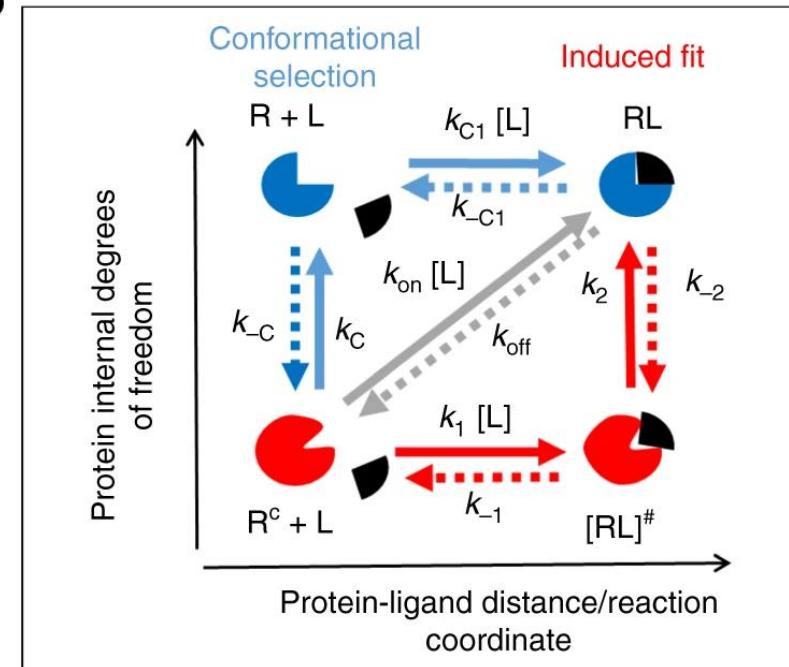


Protein binding – a kinetic problem

a



b

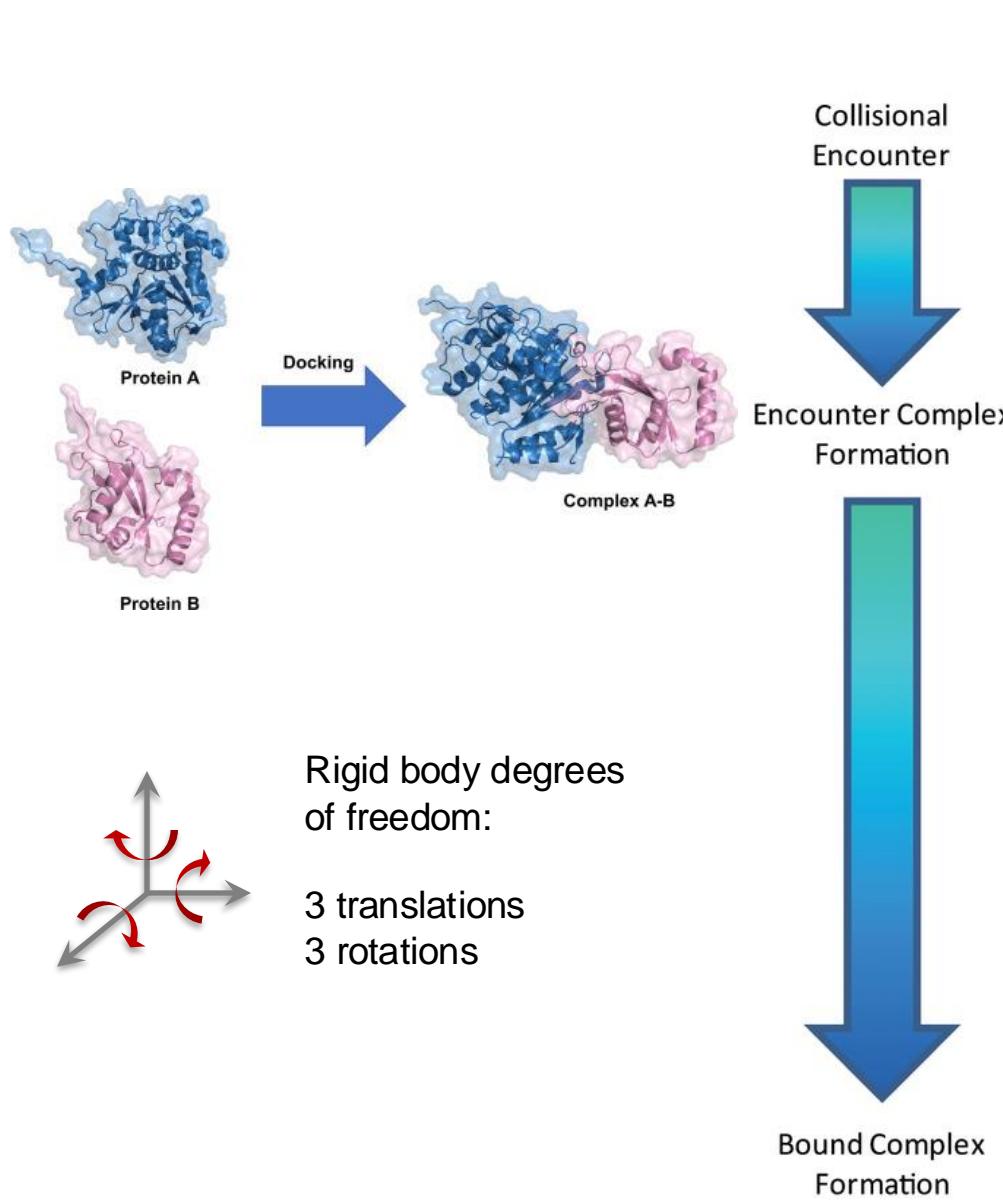
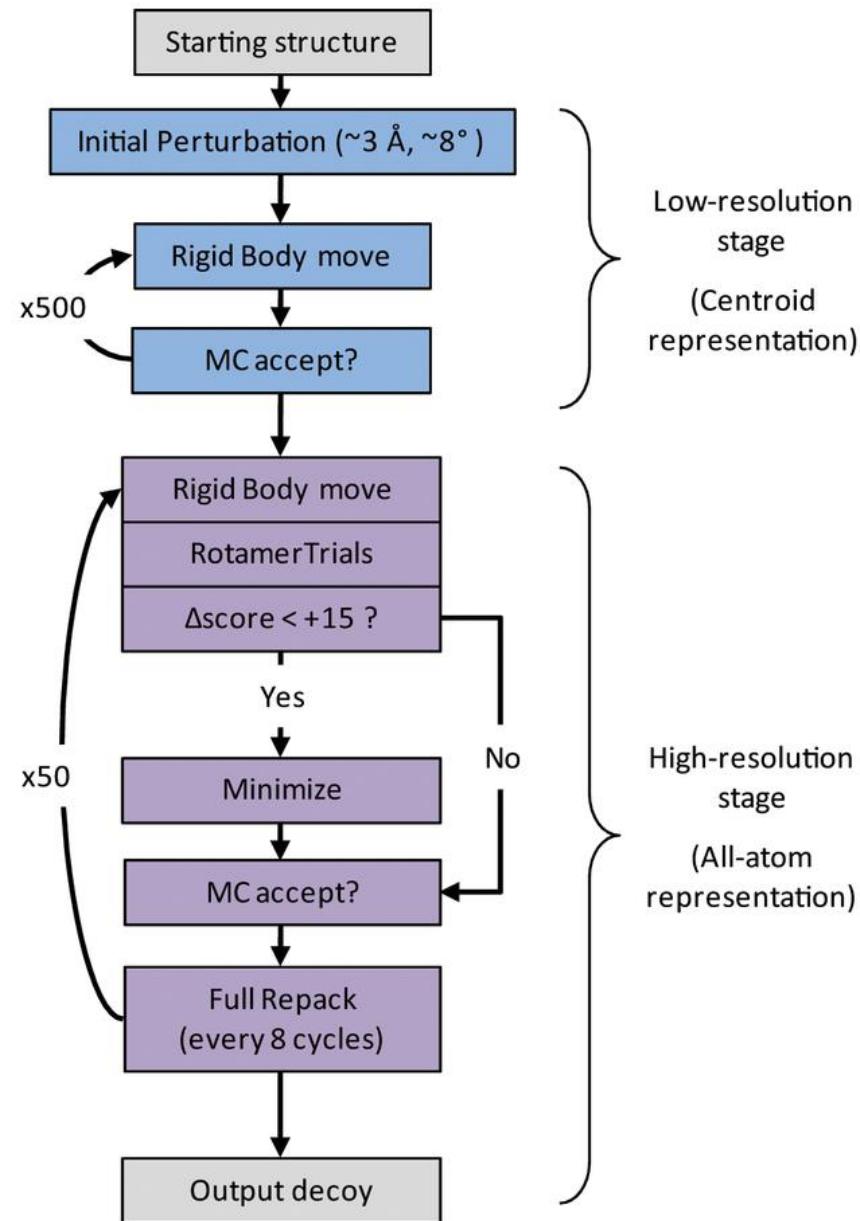


Conformational selection

Induced fit

Experimentally observable

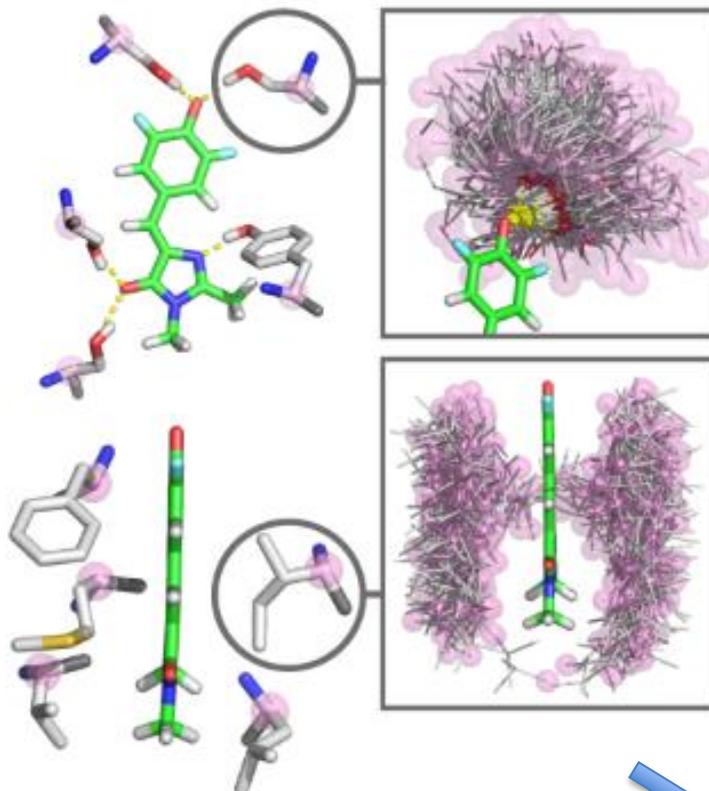
Protein docking: prediction of binding complexes



De novo design of ligand binding

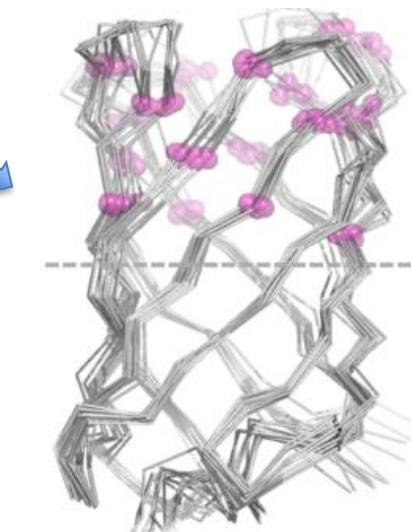
Step 1:
Pre-defined optimal
binding interactions
between ligand &
residue side-chains

● $C\alpha$ atom



Step 2:
Inverse rotamer
generation from
ligand-side-chain
contacts

Step 3:
Matching and grafting of ligand-binding
residues onto a protein scaffold



Protein Design – Examples overview

1. De novo protein functional fold

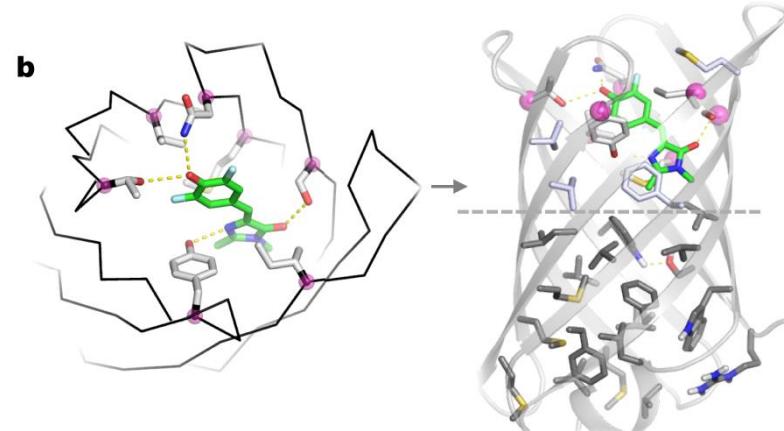
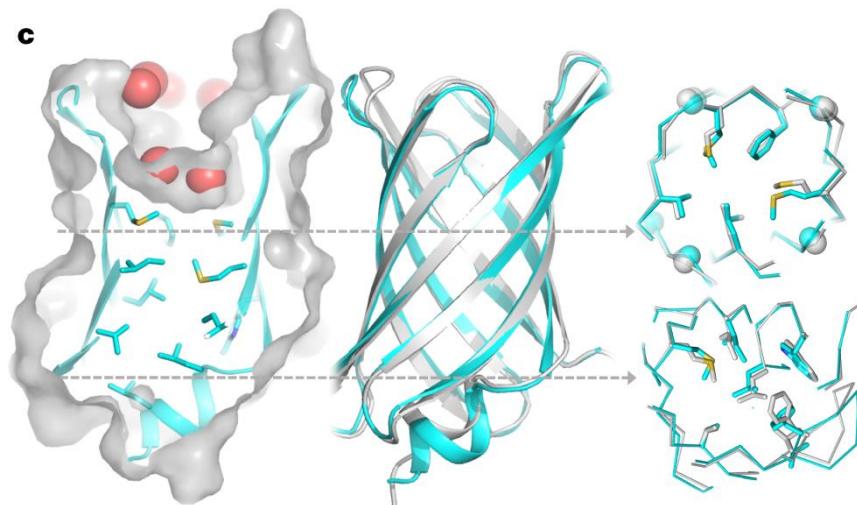
2. Enzyme

3. Ligand biosensor design

Design of new functional folds: fluorescence activating beta barrel

The beta barrel
scaffold

Ideal for ligand binding

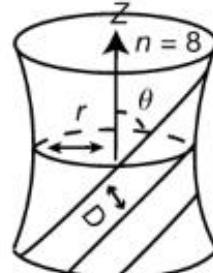
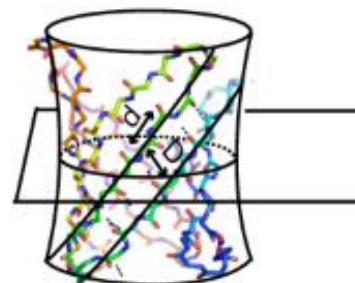


Design of new functional folds: fluorescence activating beta barrel

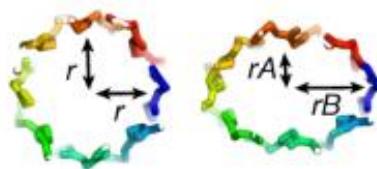
3D ideal
geometry

*parametrization
using an equation for
an elliptic hyperboloid
of revolution*

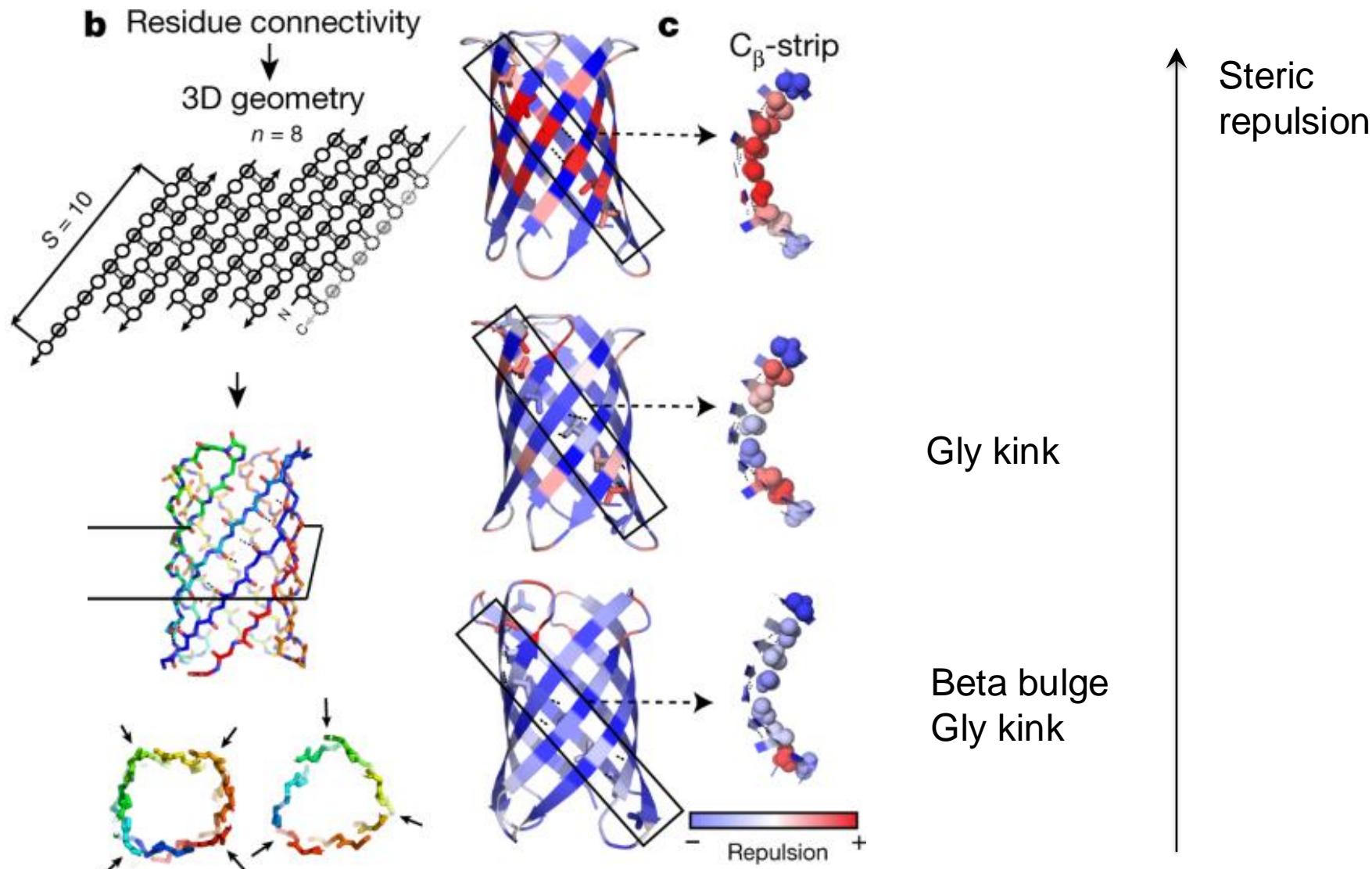
Residue connectivity



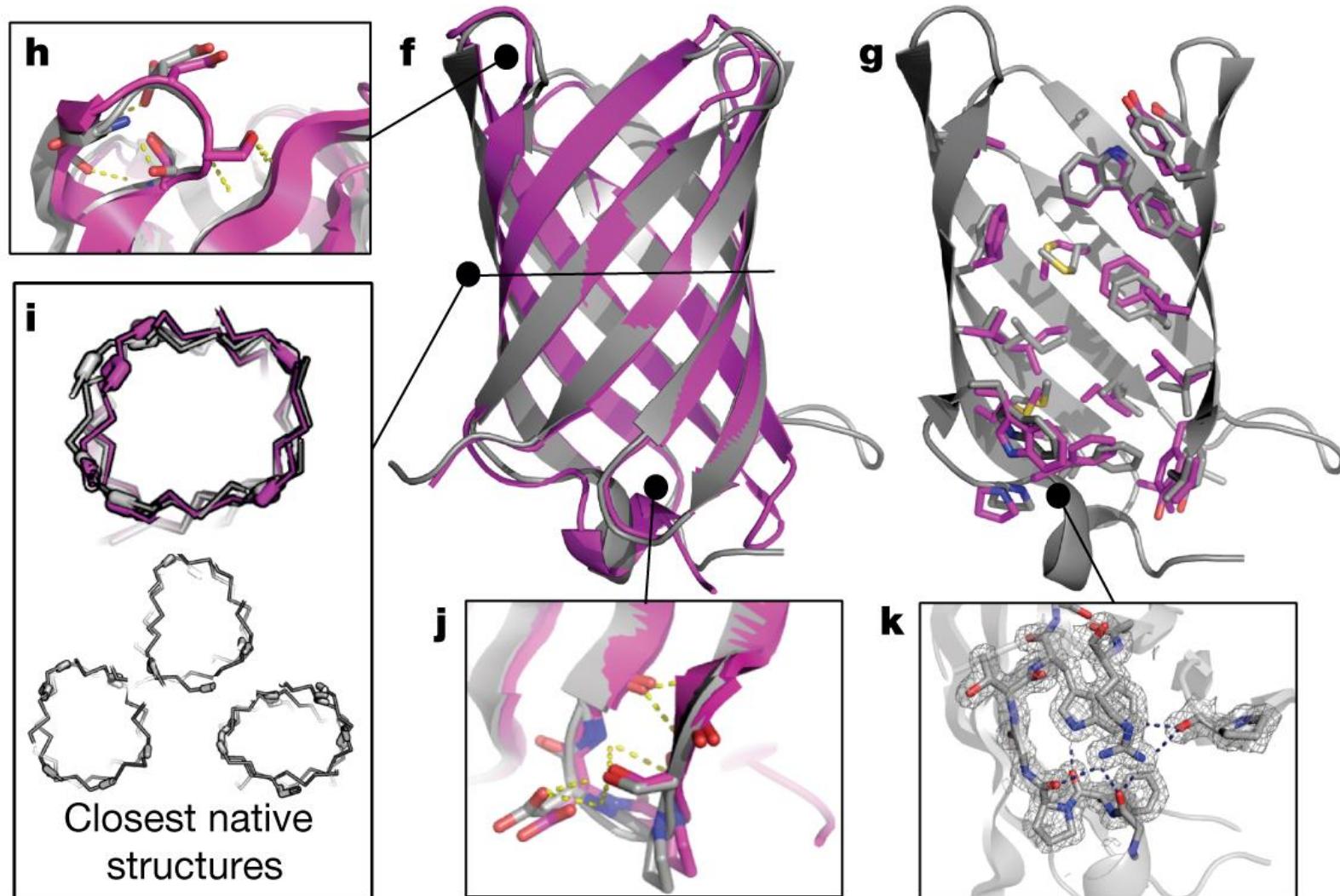
No
folded
designs !



Design of new functional folds: fluorescence activating beta barrel

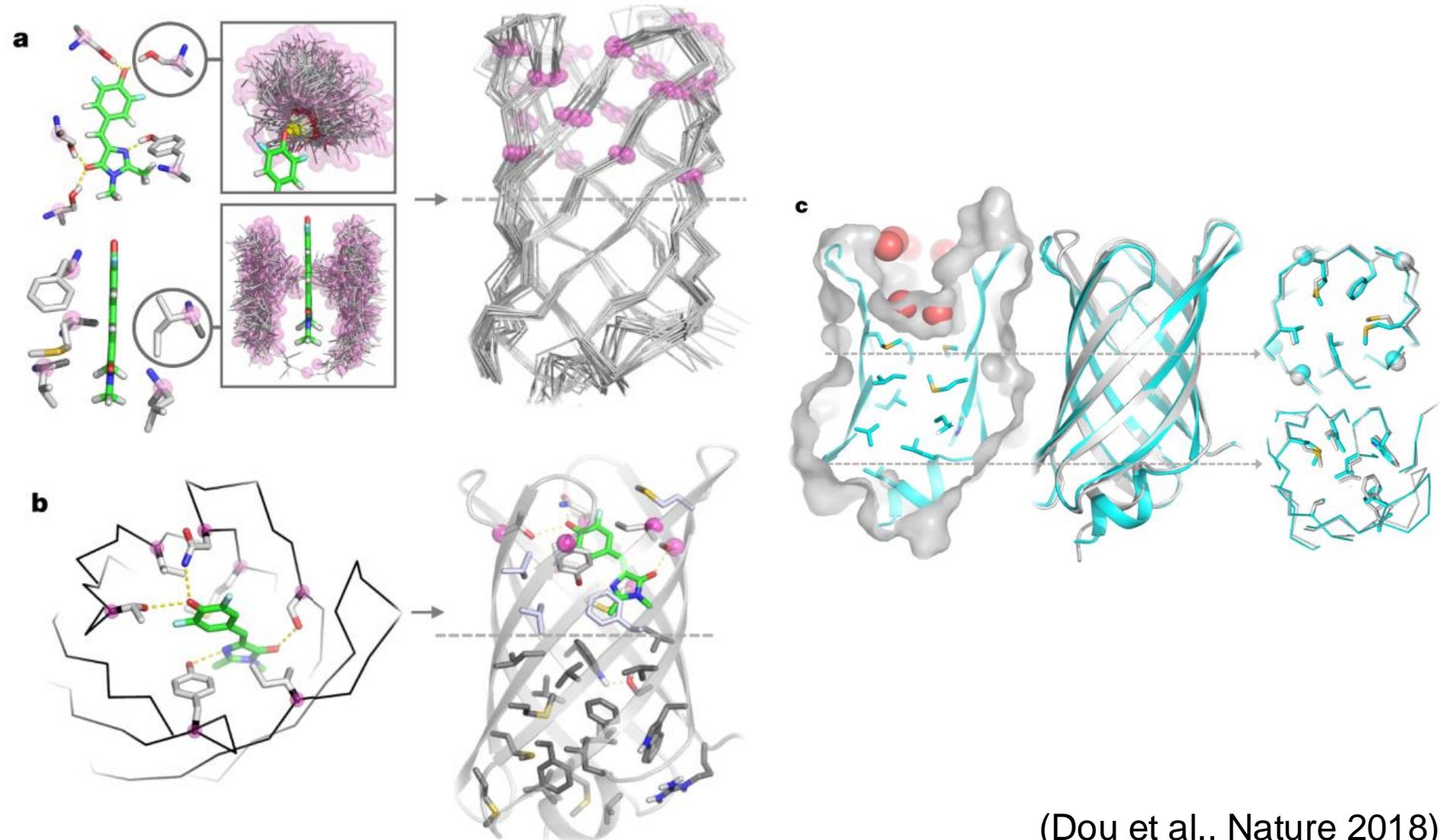


Design of new functional folds: fluorescence activating beta barrel



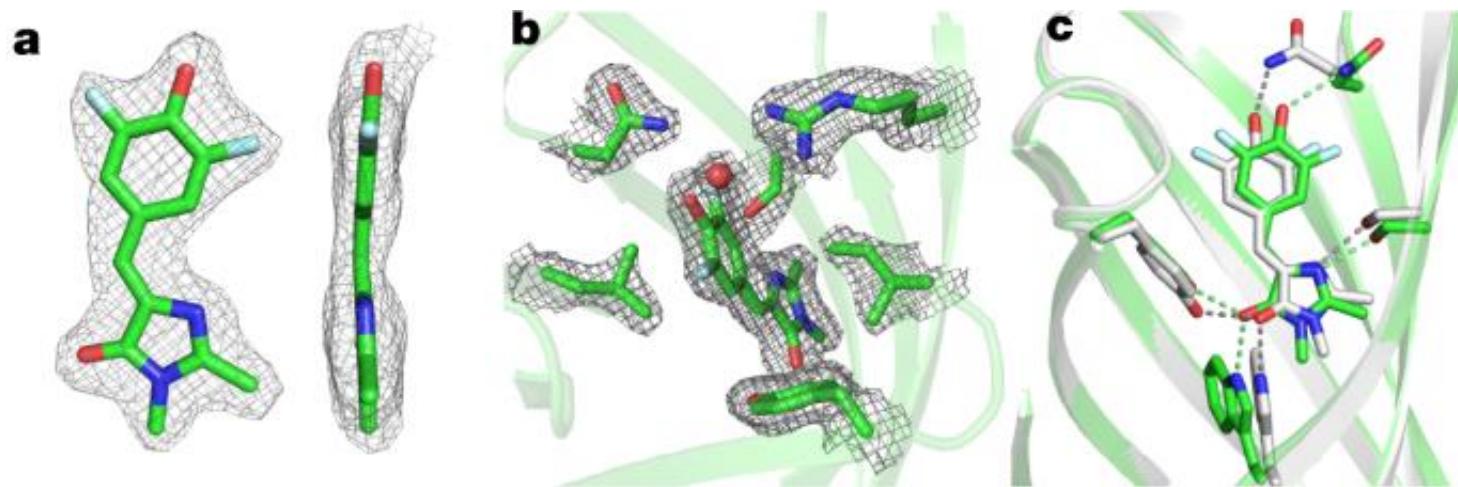
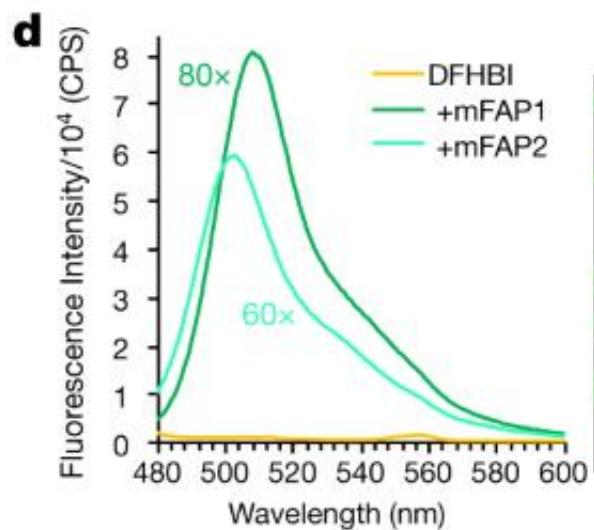
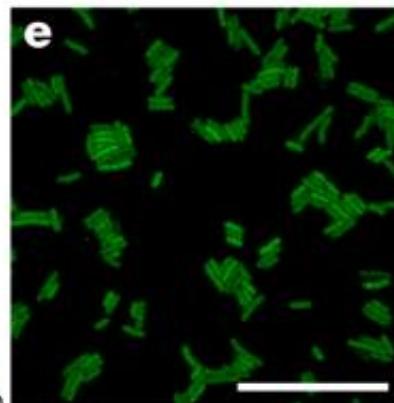
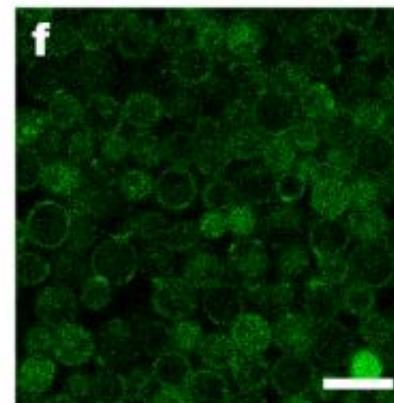
Design of new functional folds

Barrel design with ligand binding cavity



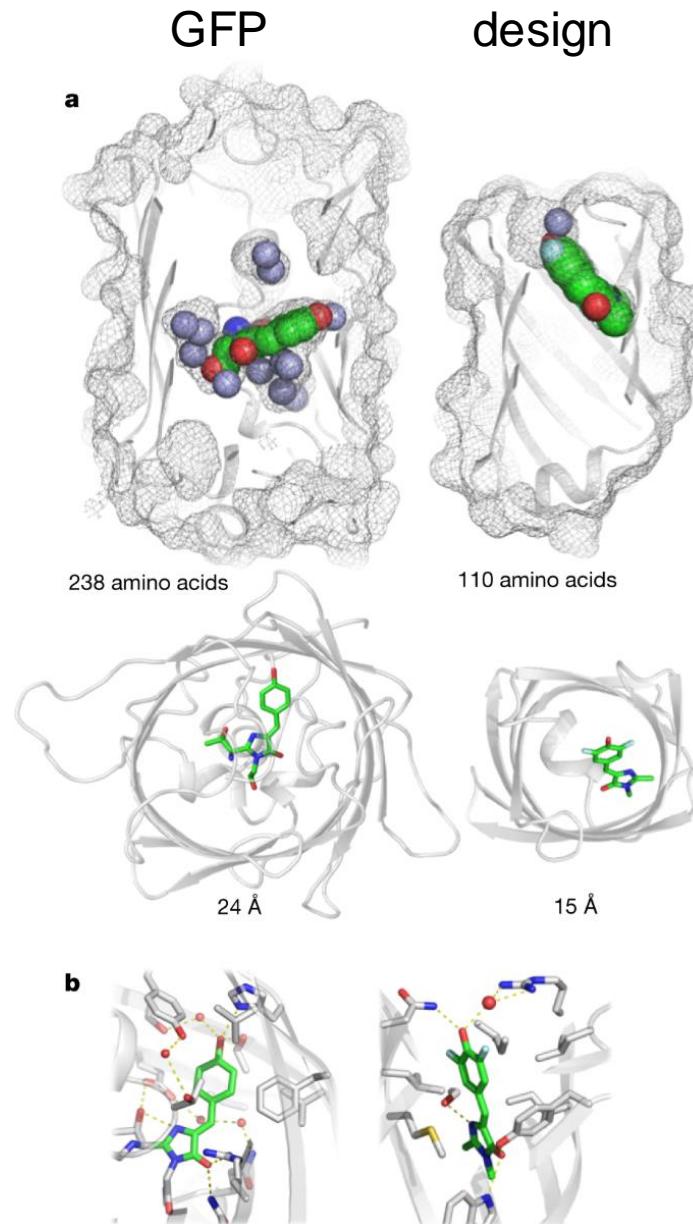
(Dou et al., Nature 2018)

Design of new functional folds



Design of new functional folds

Comparison with naturally evolved GFP



Take home messages

1. De novo design of beta barrels is challenging
2. Are the Gly kink bulge rules universal and applicable for all barrels?
3. Precise ligand binding is possible when starting from a hyperstable and rigid scaffold: destabilizing ligand binding cavity carved into a large hydrophobic stabilizing core

Protein Design – Examples overview

1. De novo protein functional fold

2. Enzyme

3. Ligand biosensor design

Design of a novel enzyme

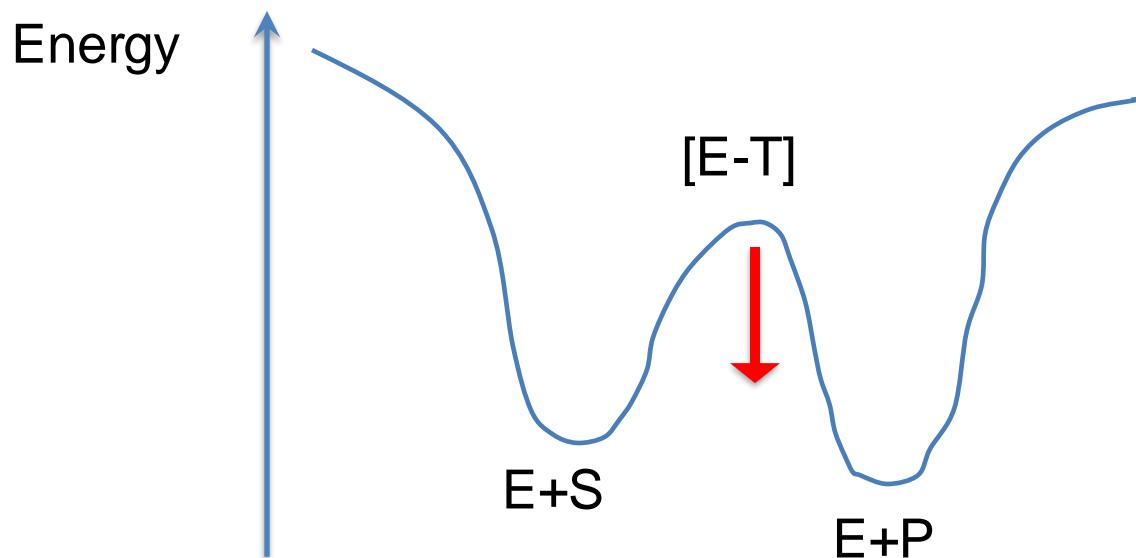
- Goal: design **artificial enzymes** that catalyze unnatural reactions
- Enzymes:
 - lower the activation barrier, by
 - stabilizing transition state
 - shielding reactants

Roethlisberger et al. 2008; Liang et al., 2008

Design of a novel enzyme

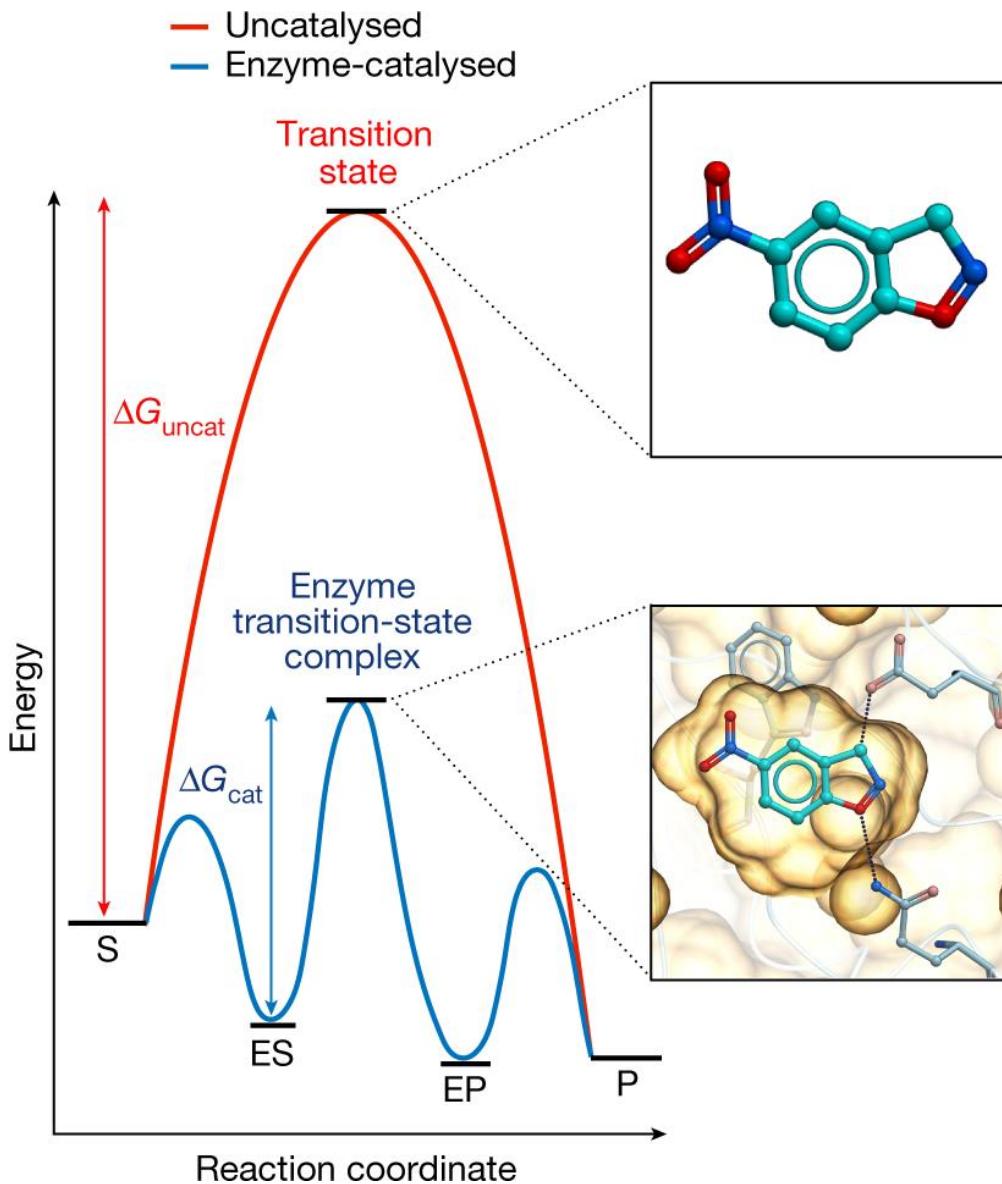
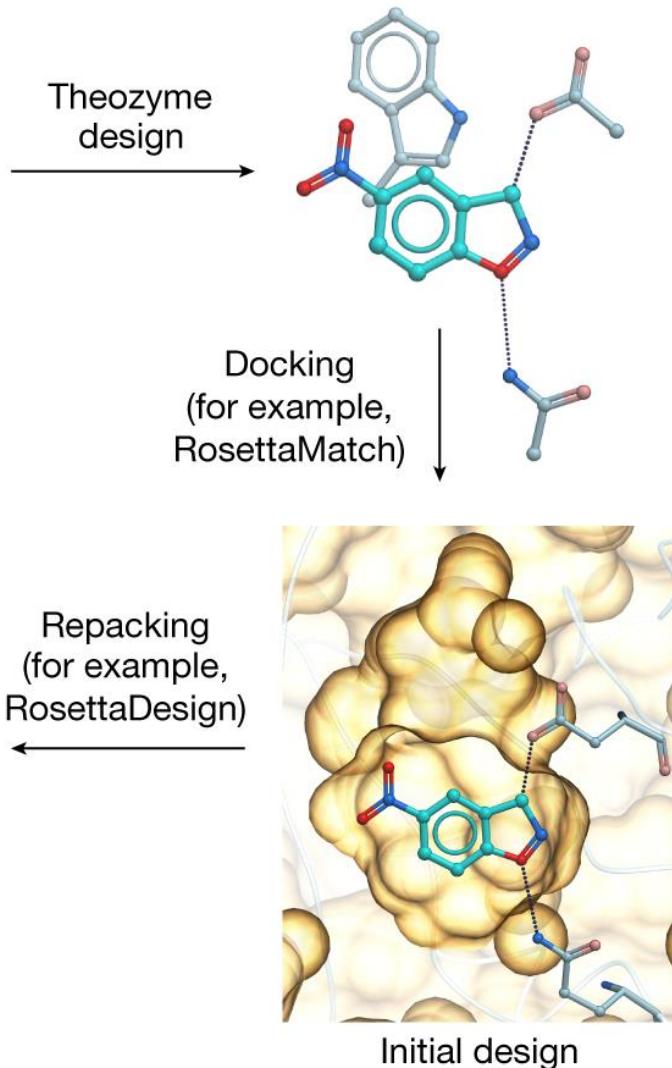
Roethlisberger et al. 2008; Liang et al., 2008

Enzyme + Substrate \rightarrow [E-T] \rightarrow Enzyme + Product



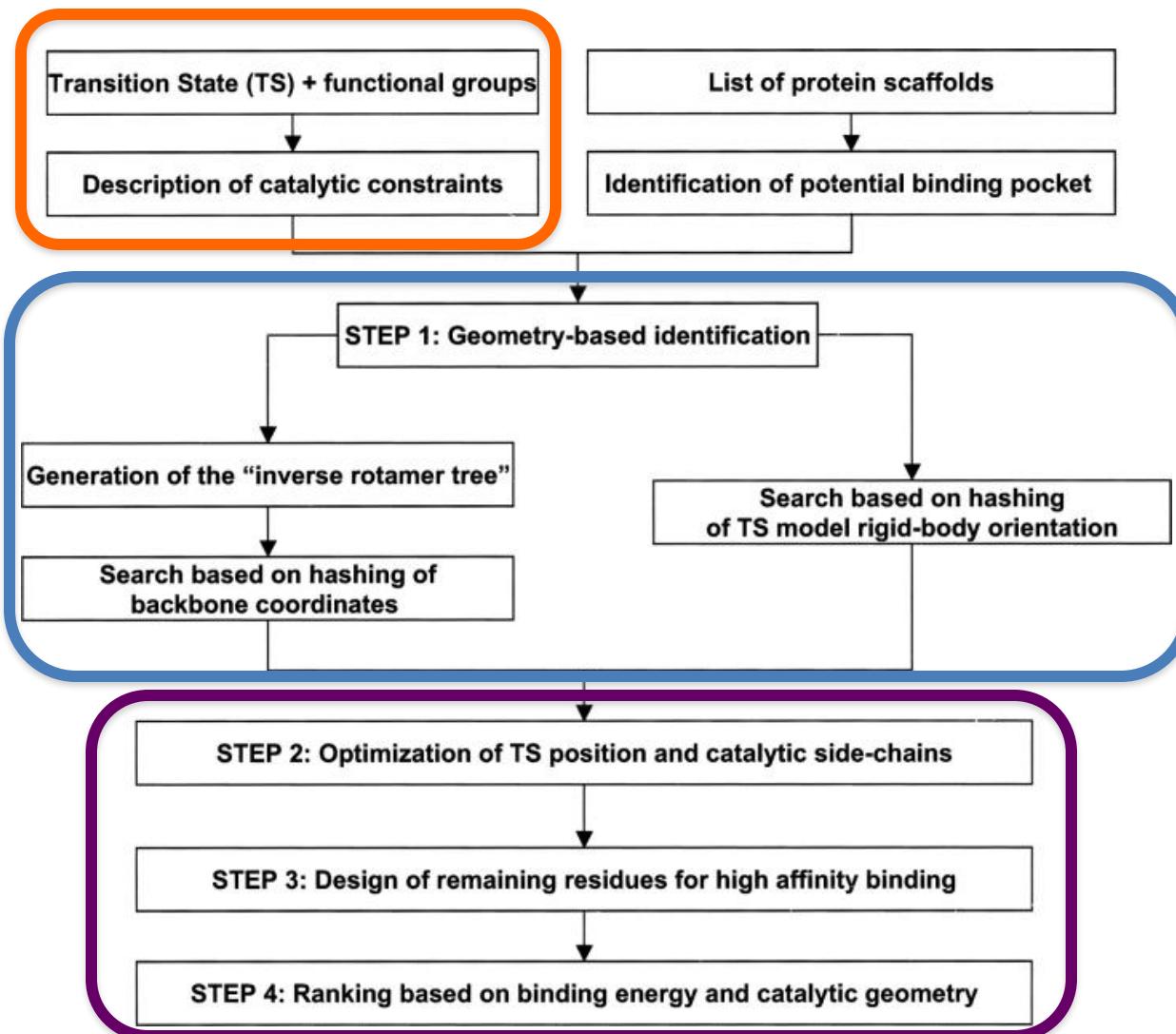
Design of a novel enzyme

Roethlisberger et al. 2008; Liang et al., 2008



Design of a novel enzyme

Roethlisberger et al. 2008; Liang et al., 2008



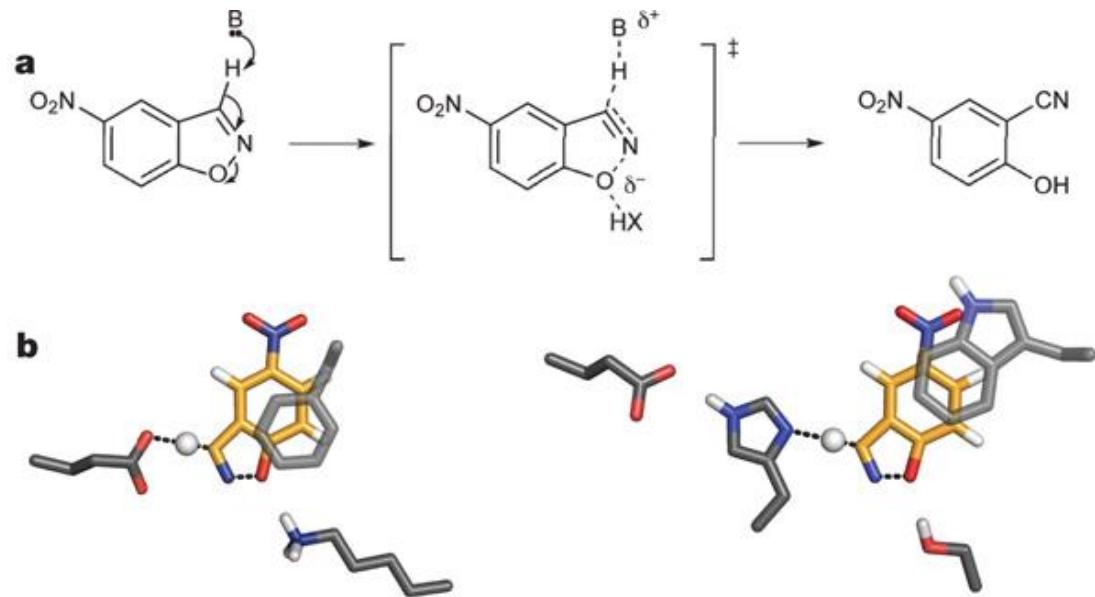
Approach:

1. Model transition state of reaction (QM)
2. Stabilize with carefully placed chemical groups around it
3. Graft resulting active site into an existing protein
4. Alter the sequence of the protein to accommodate the active site

Model transition state

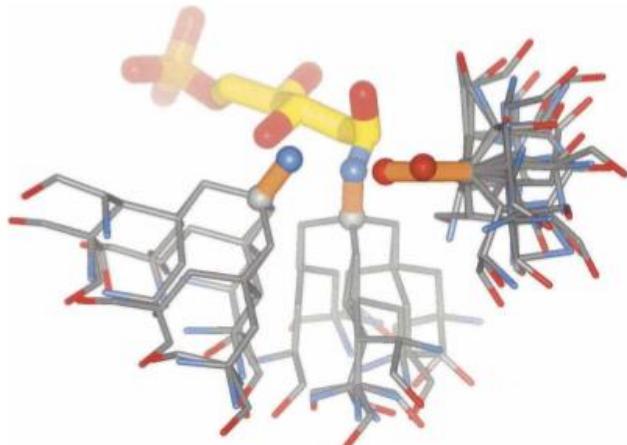
- Kemp Elimination
- Water mediated

Model transition state

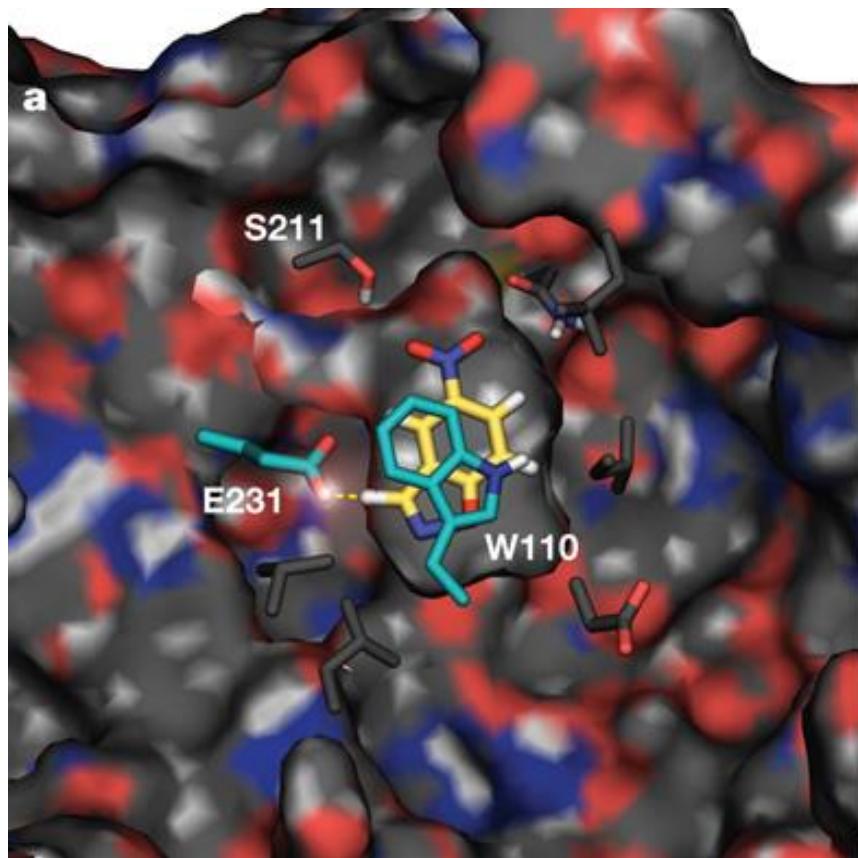
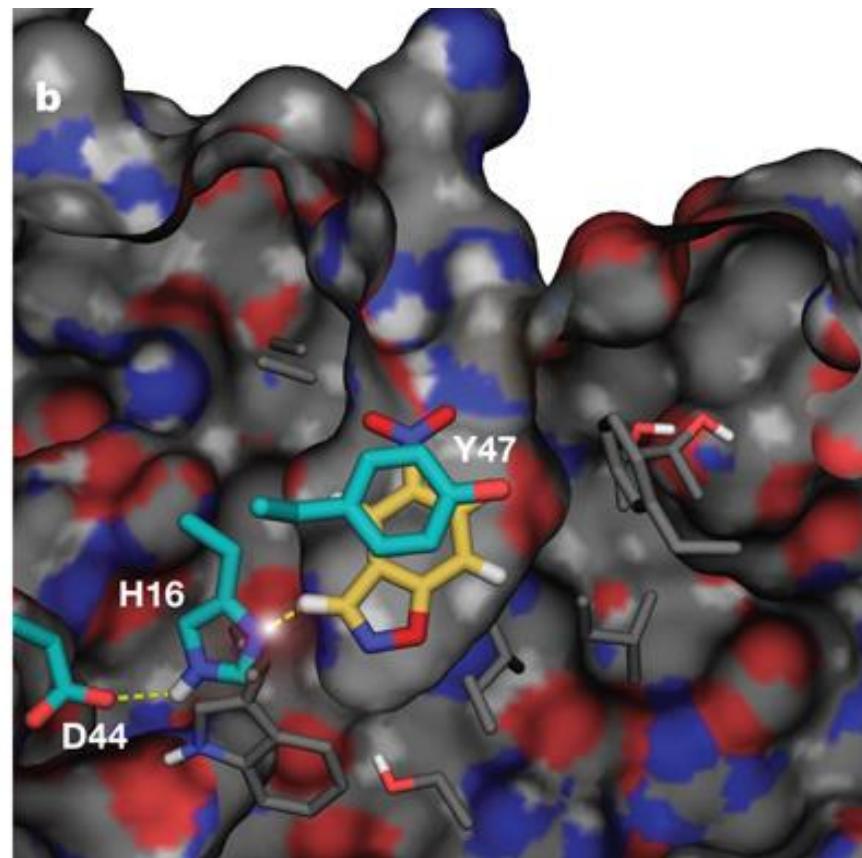


Search for Template

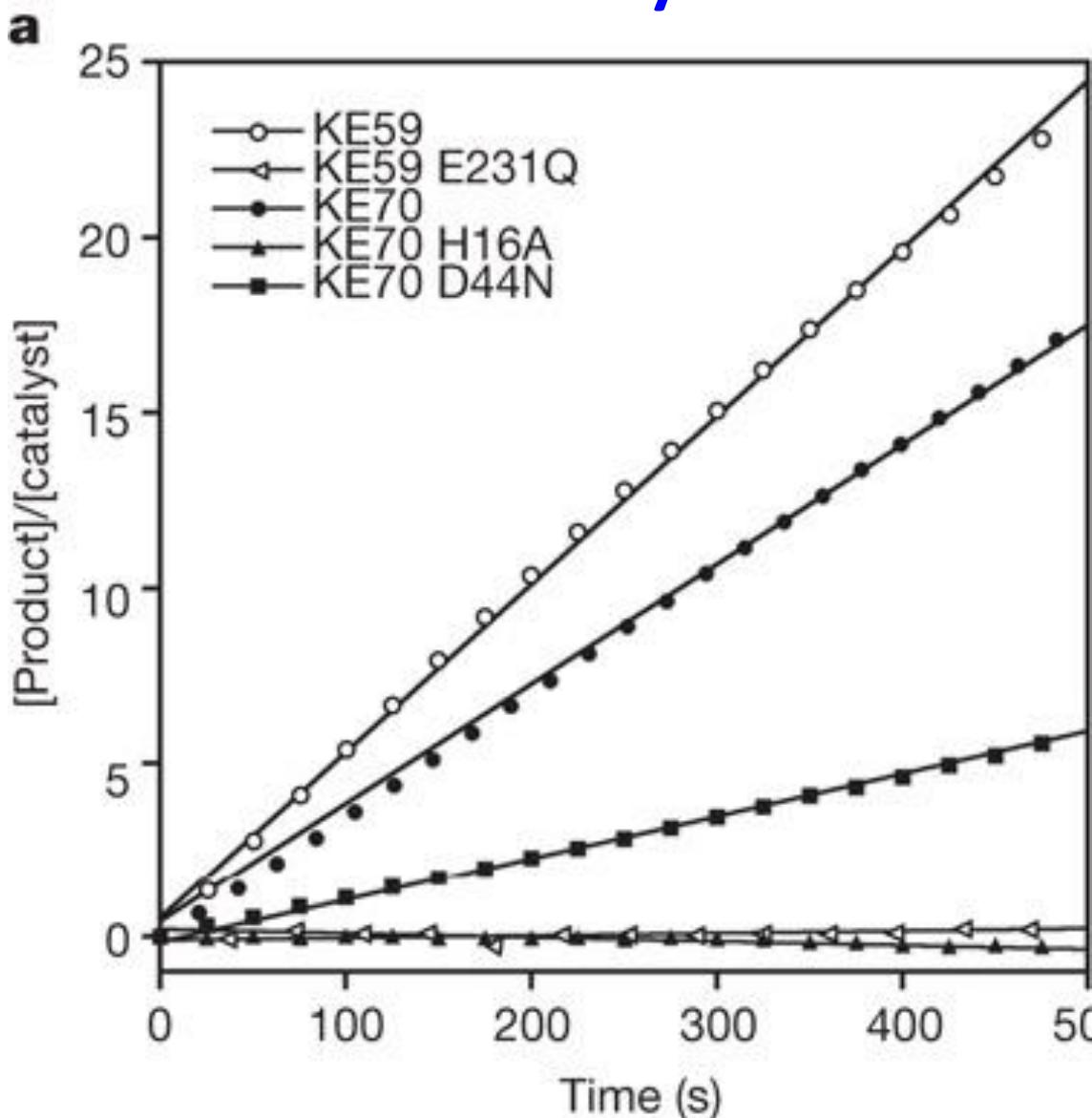
- Inside-out:
 - Build inverse rotamer tree starting from catalytic site
 - Search for fitting backbone templates (geometric hashing)
- RosettaMatch: Outside-in:
 - Place side chains and transition state model at each position
 - Search for transition state model orientations that fit several positions



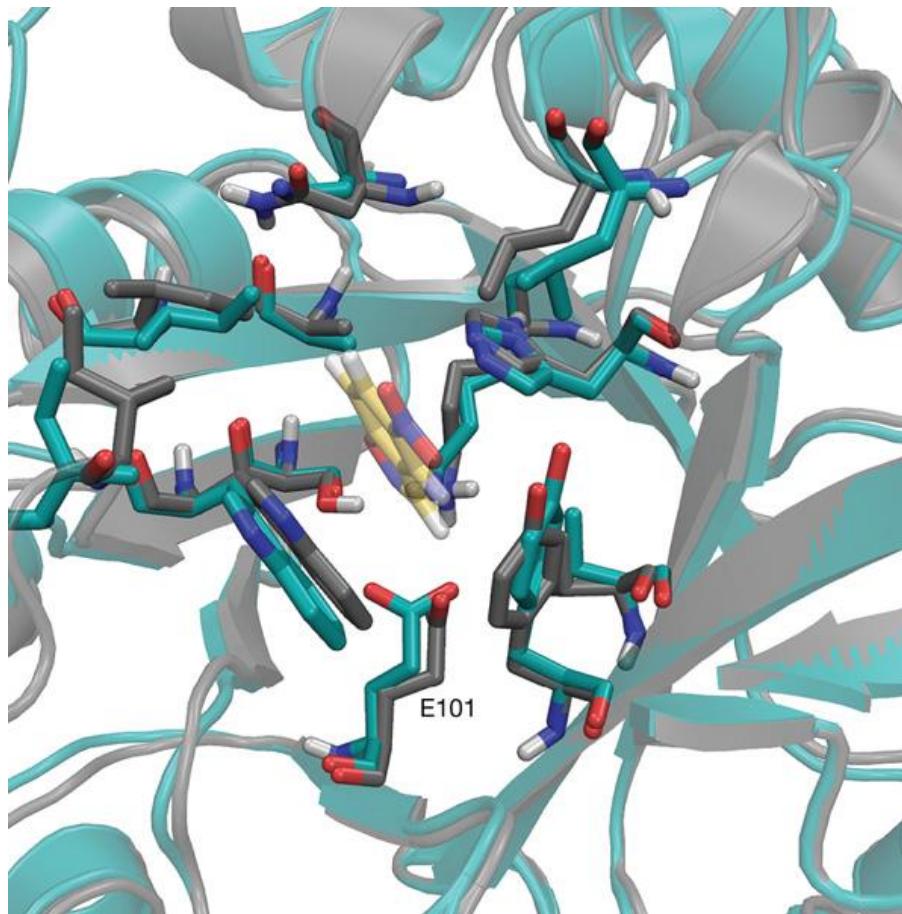
Find match



Validation 1: enzyme is active



Validation 2: accurate structure prediction



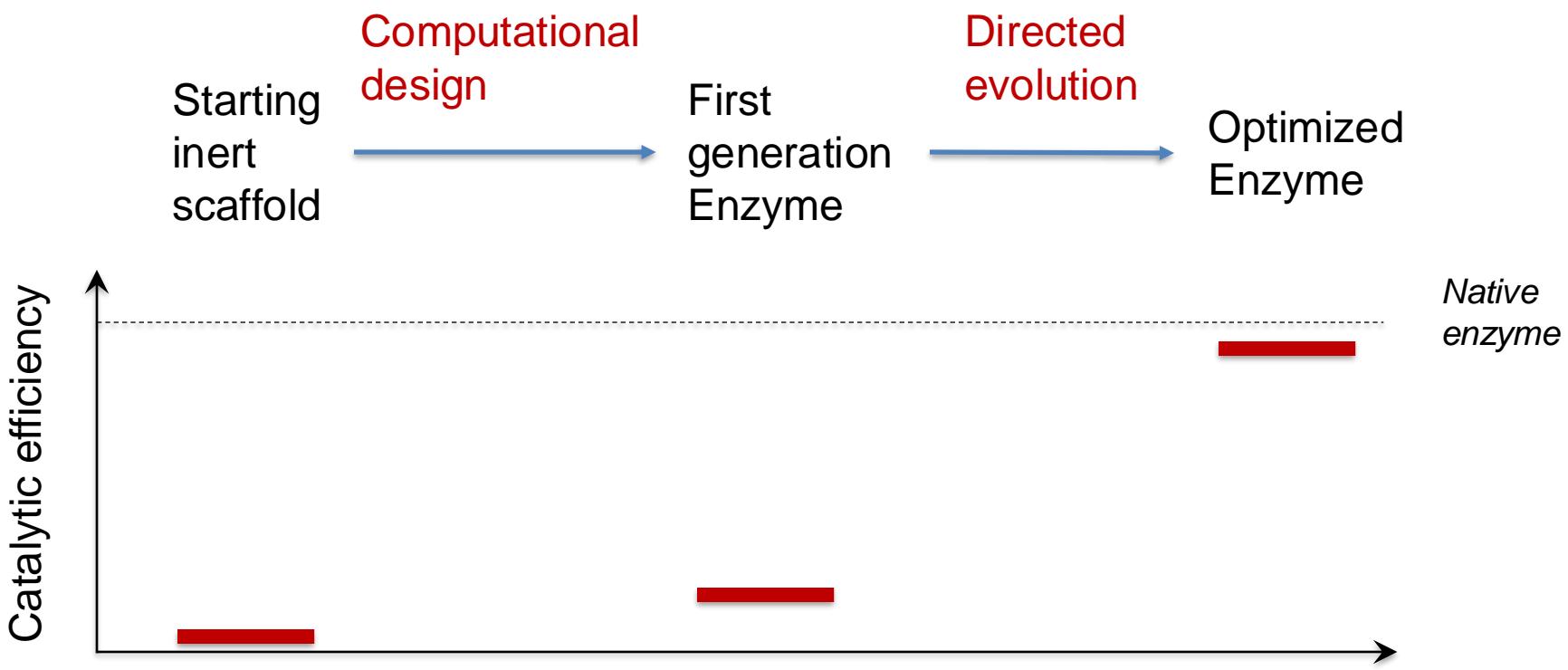
Is this all?

Is the enzyme design problem
solved?

Designed HG3: $k_{cat} \sim 1 \text{ s}^{-1}$

Native kemp eliminases: $k_{cat} \sim 400-500 \text{ s}^{-1}$

Precision is essential for efficient catalysis in an evolved Kemp eliminase (Blomberg, Nature 2014)



Directed evolution of Kemp eliminase HG3 (Blomberg, Nature 2014)

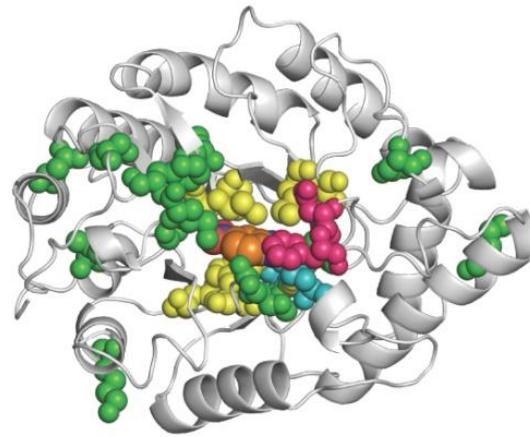
Computational design: HG3

a

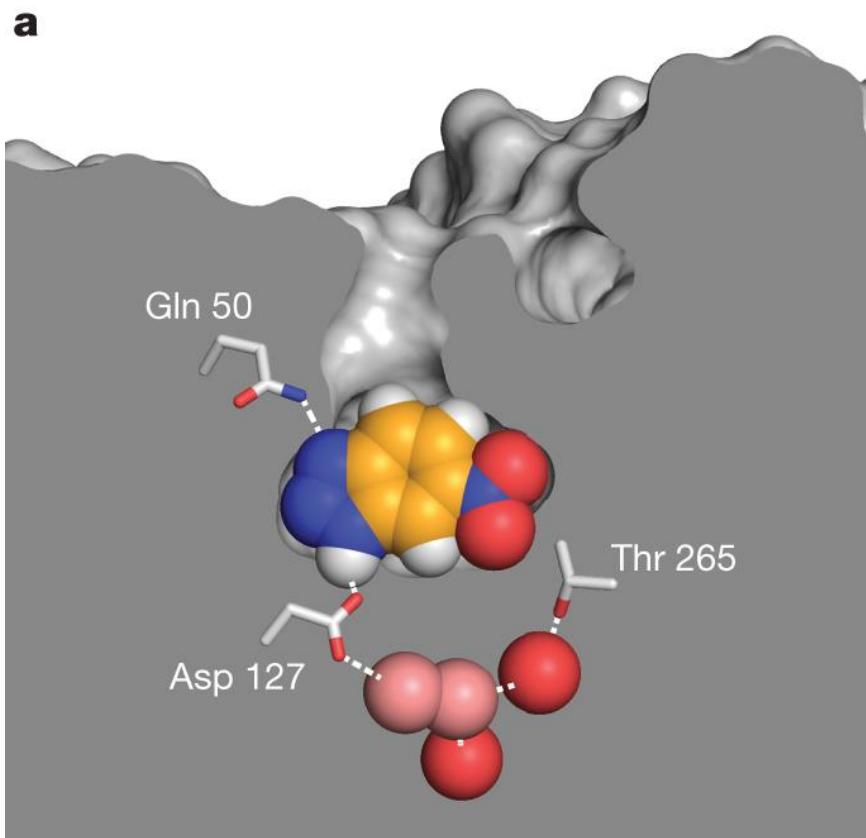
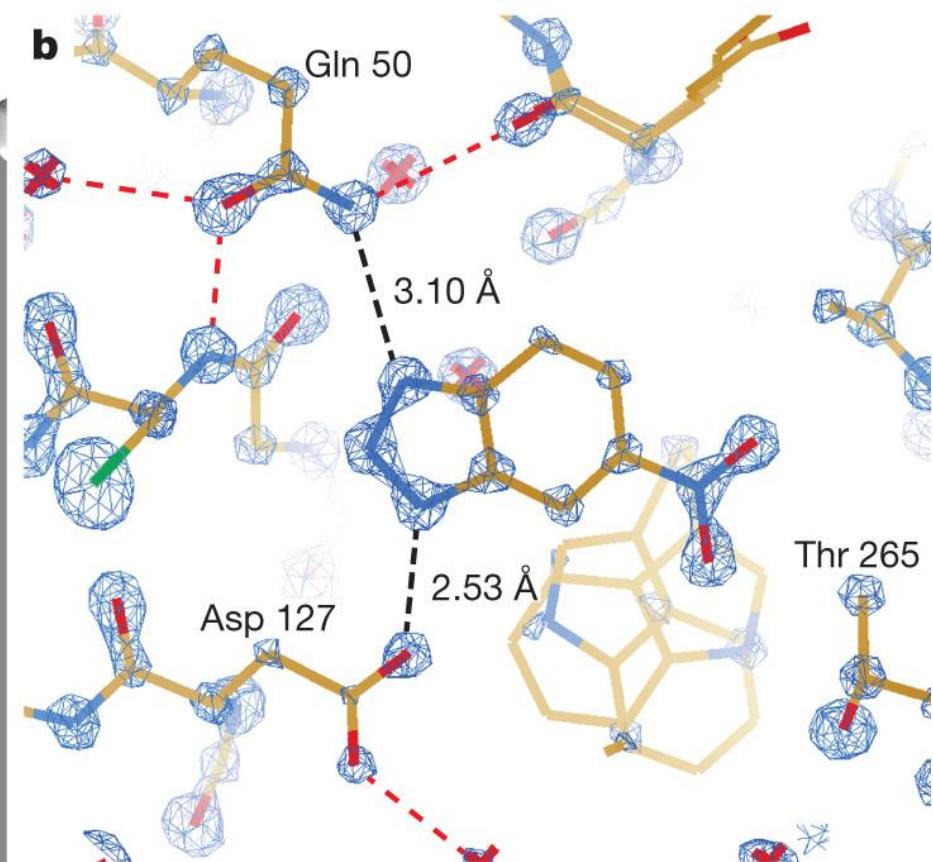


Directed evolution: HG3.17

b



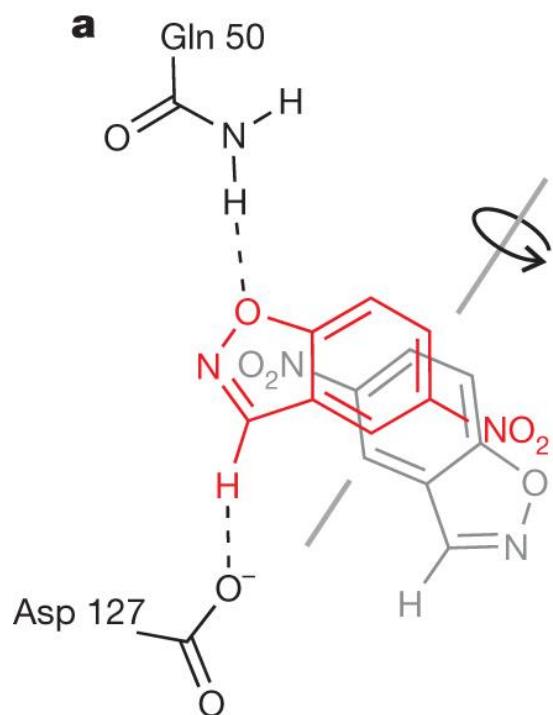
Crystal structure of HG3.17 (Blomberg, Nature 2014)



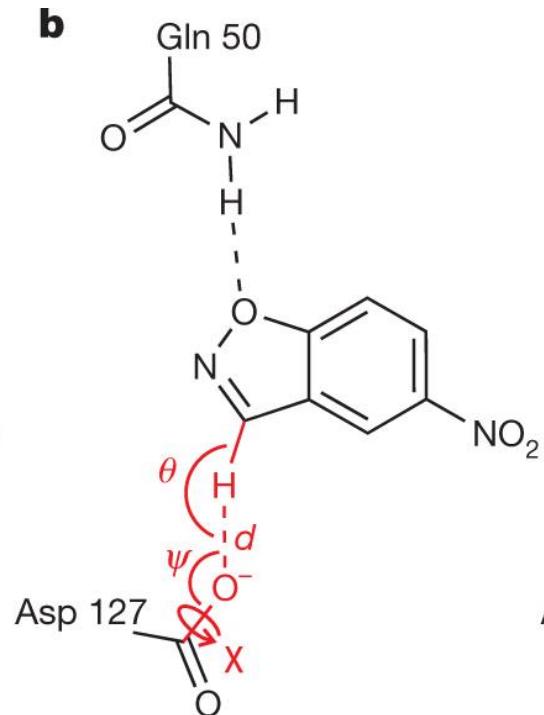
Catalytic improvement of HG3

(Blomberg, Nature 2014)

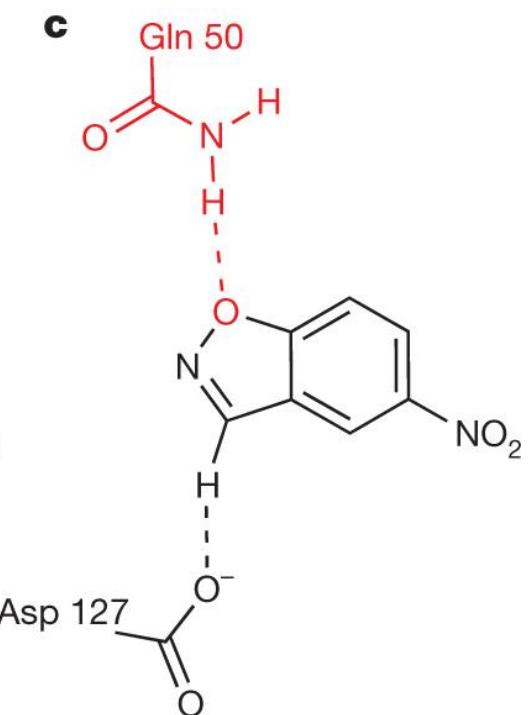
Elimination of a
on unproductive
binding mode



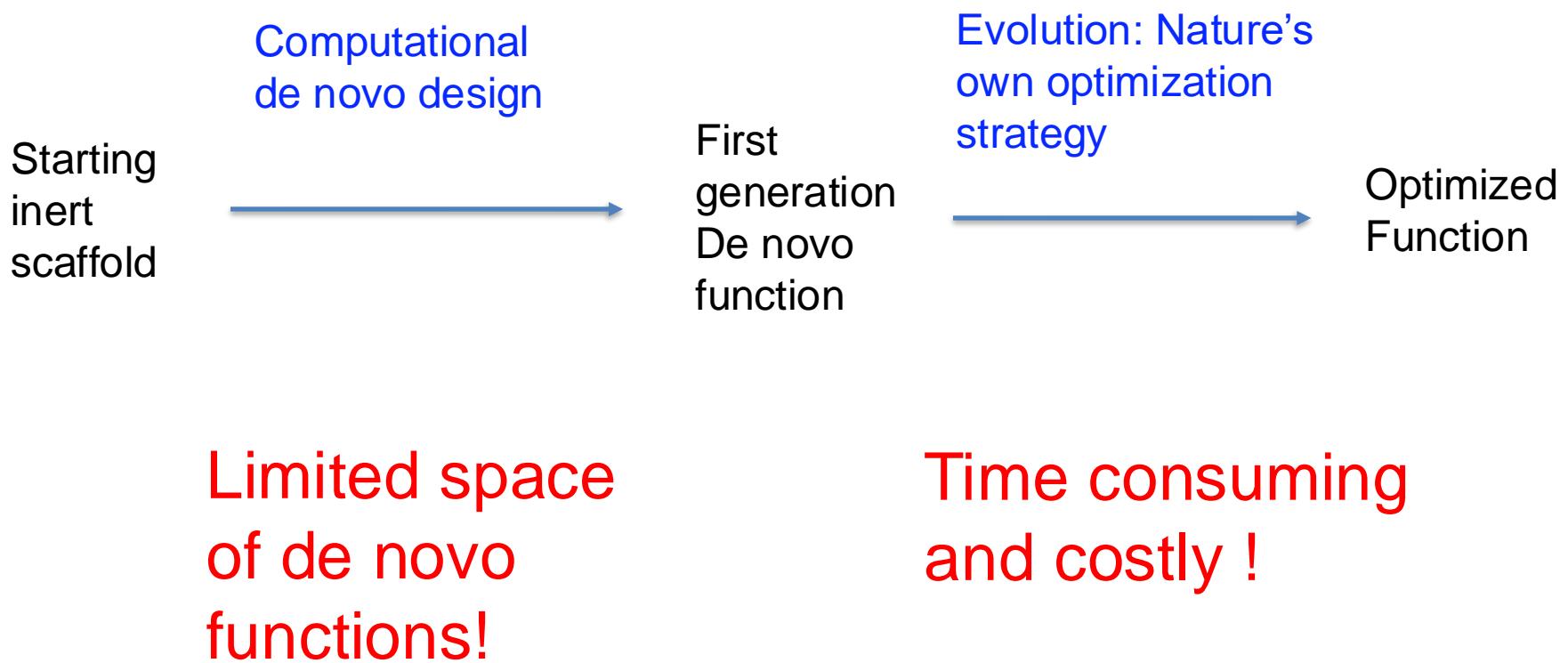
Efficient proton
transfer



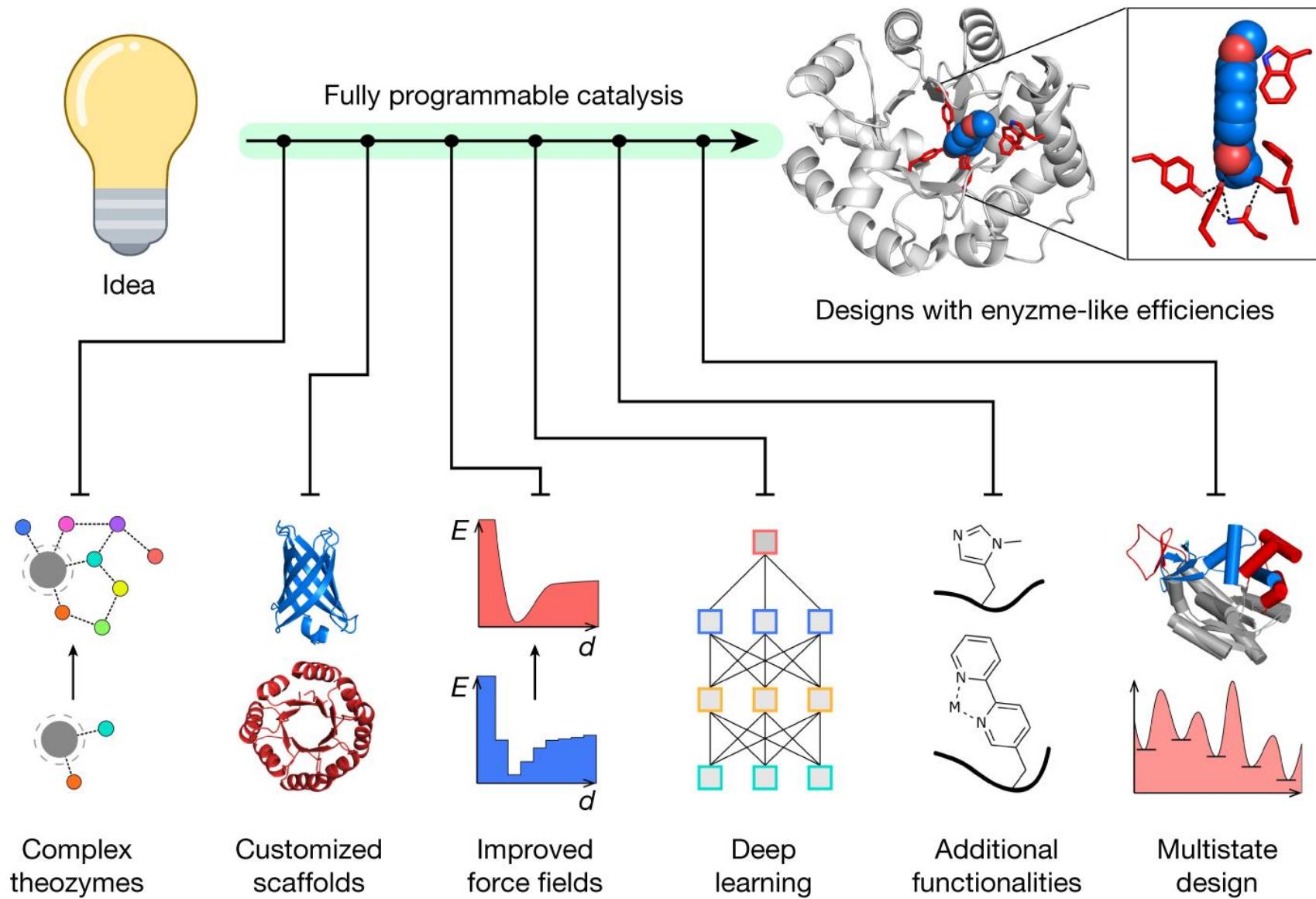
Optimal TS
stabilization



Take home messages

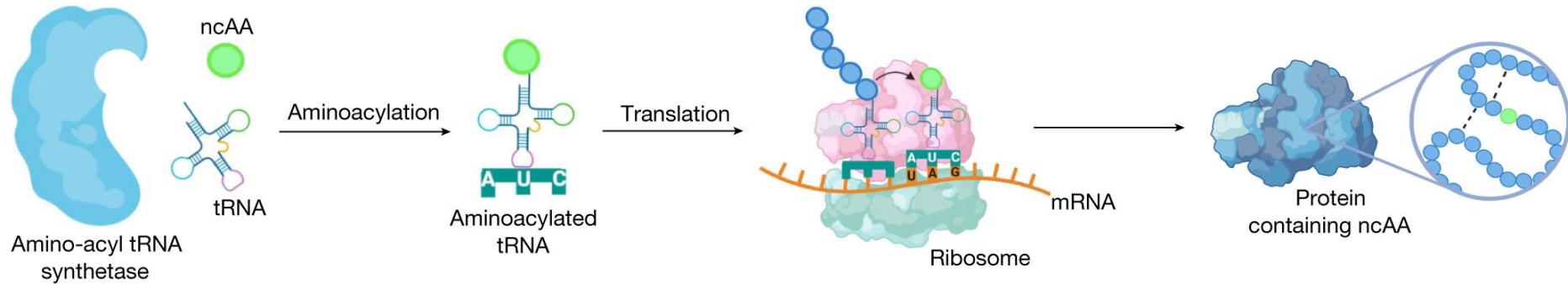


A road map to better enzymes



One future direction: non canonical AA for expanded chemical space

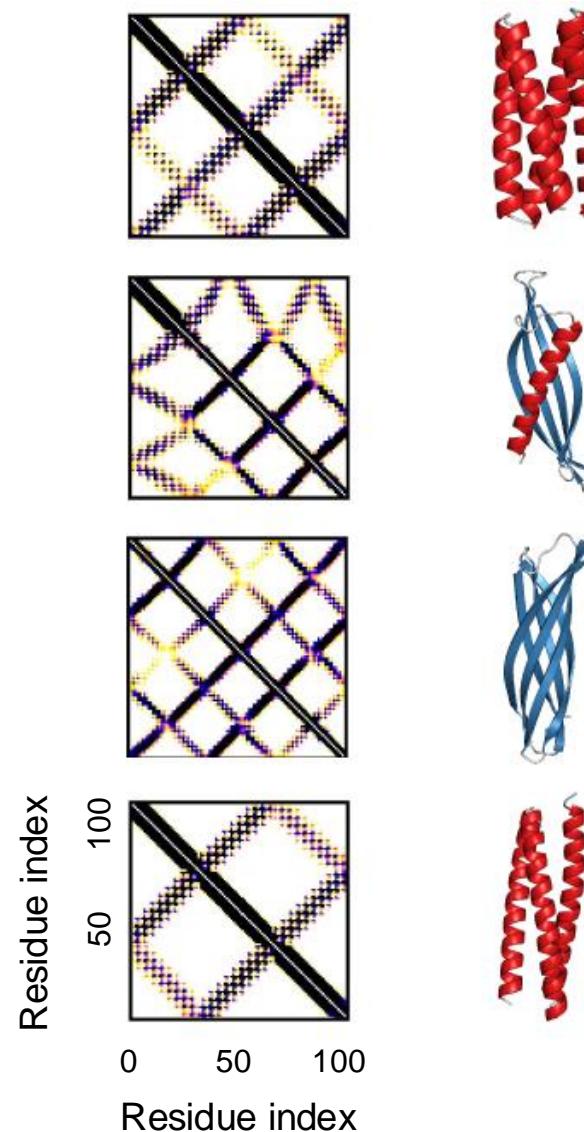
a



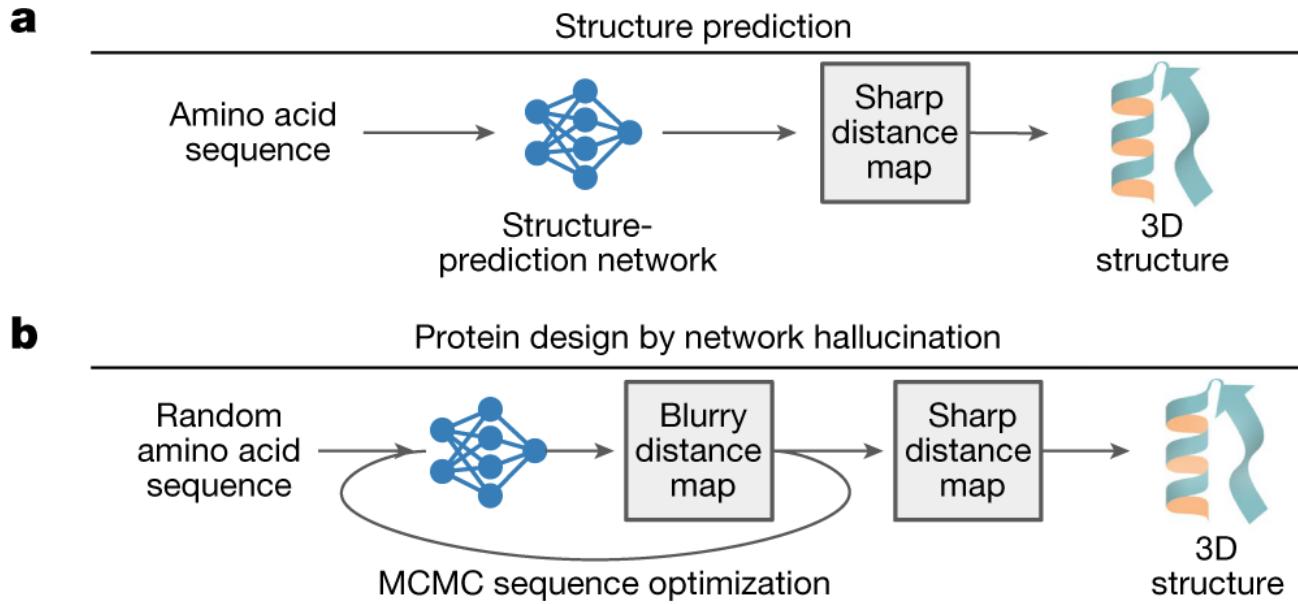
De novo design of luciferases using deep learning

Each protein structure is characterized by a matrix of residue-residue contacts

Neural networks learn these contact patterns



De novo design of luciferases using deep learning



De novo design of luciferases using deep learning

b

Protein design by network hallucination

Random
amino acid
sequence

Blurry
distance
map

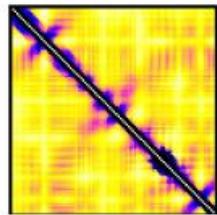
Sharp
distance
map

3D
structure

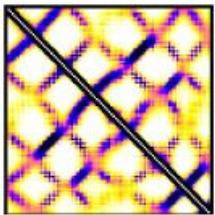
MCMC sequence optimization

MCMC step

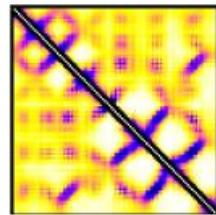
0



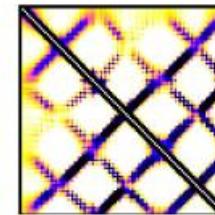
1000



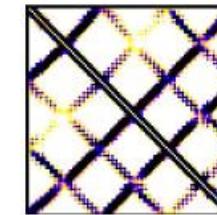
5000



10000



40000



Residue index

0

50

100

0 50 100
Residue index

Residue index

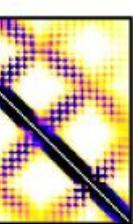
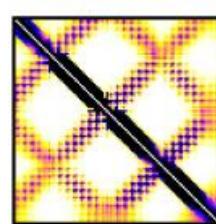
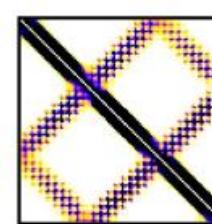
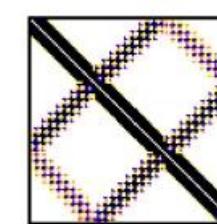
0 1
Predicted probability of
 $C_{\beta}-C_{\beta}$ distance $< 10 \text{ \AA}$

Residue index

0

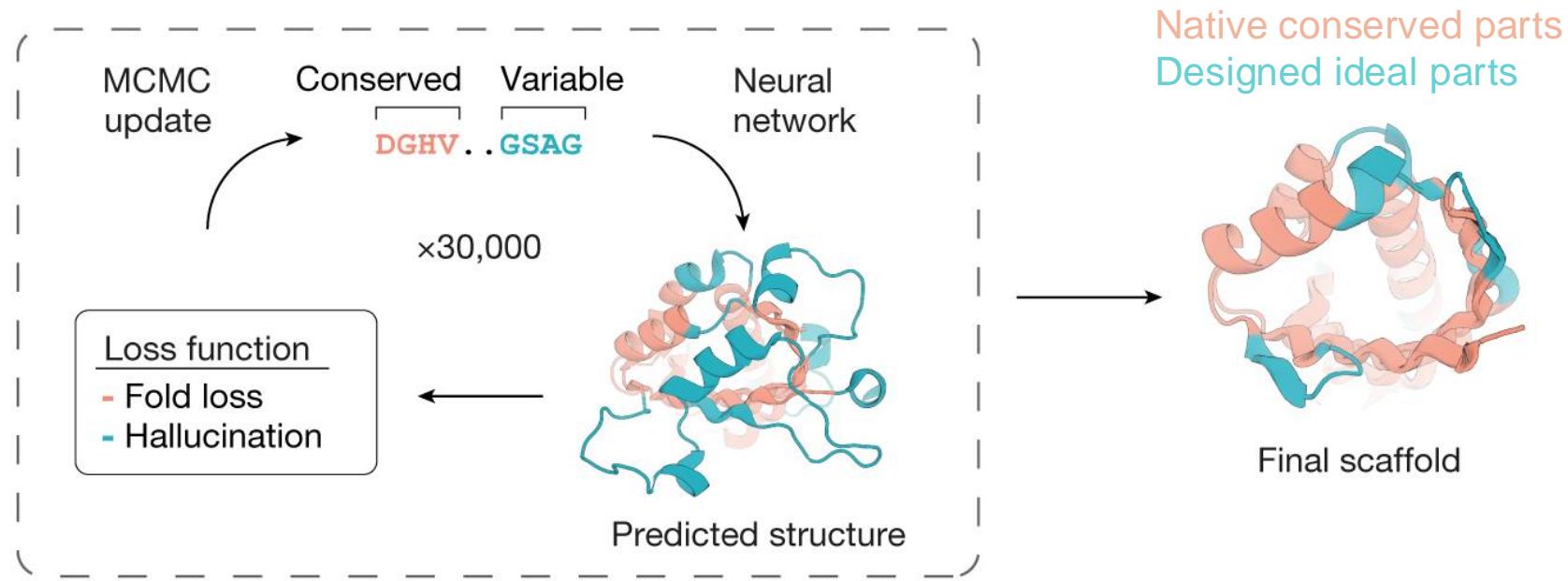
50

100

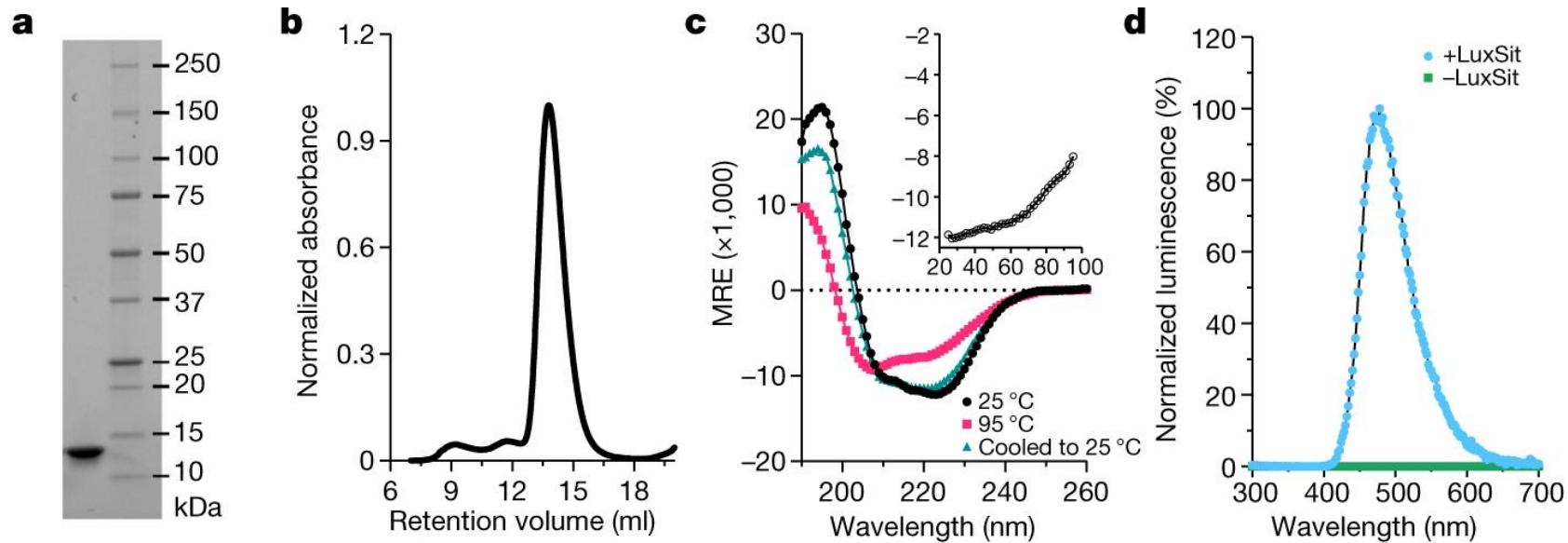
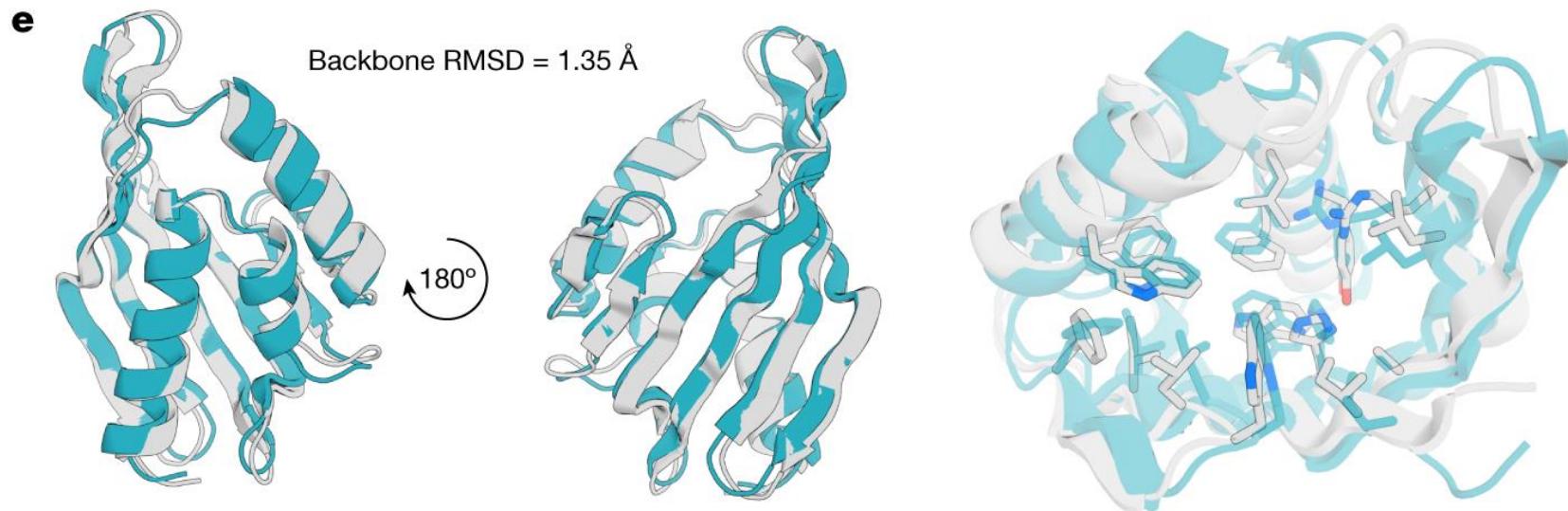


De novo design of luciferases using deep learning

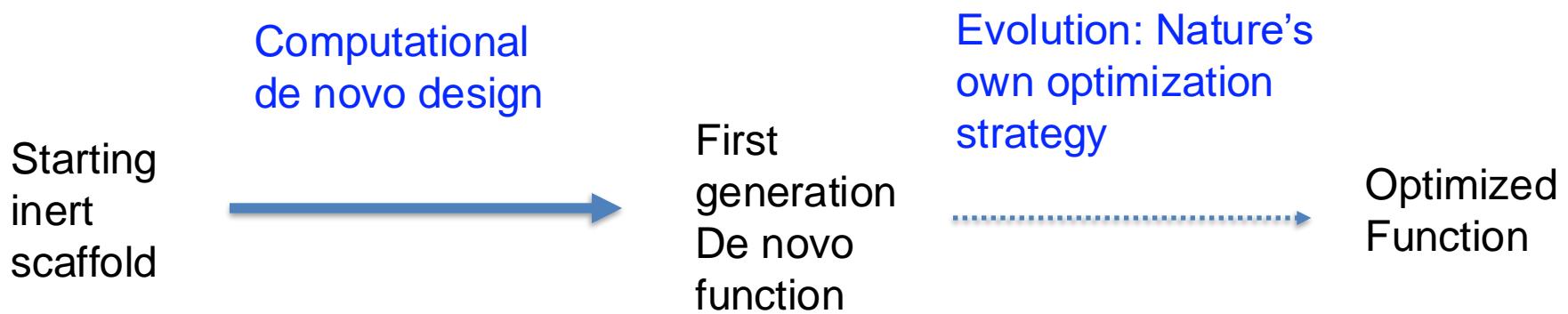
a



De novo design of luciferases using deep learning



Take home messages



Deep learning

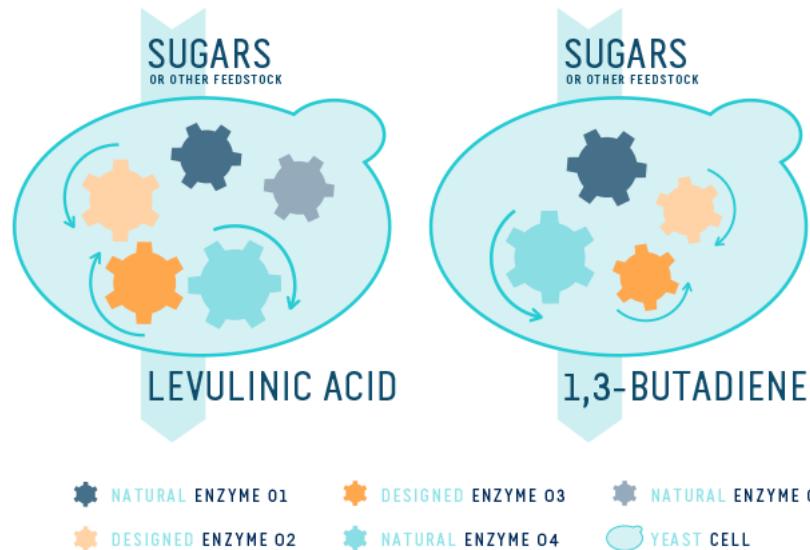
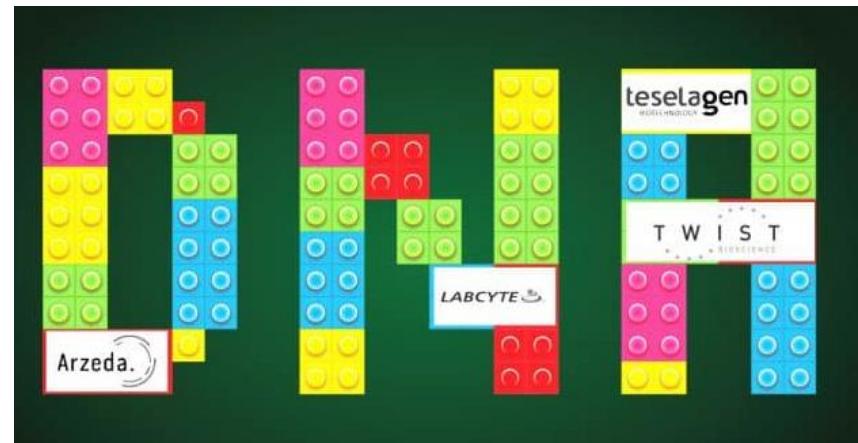
Artificial chemistry

Many others

Enzyme Design for a more sustainable world

Arzeda is harnessing the power of computational protein design to build novel enzymes and discover new pathways that enable cost effective, sustainable production of value-added specialty chemicals and ingredients

02 ARZEDA'S DESIGNER CELL FACTORY



Protein Design – Examples overview

1. De novo protein functional fold

2. Enzyme

3. Ligand biosensor design

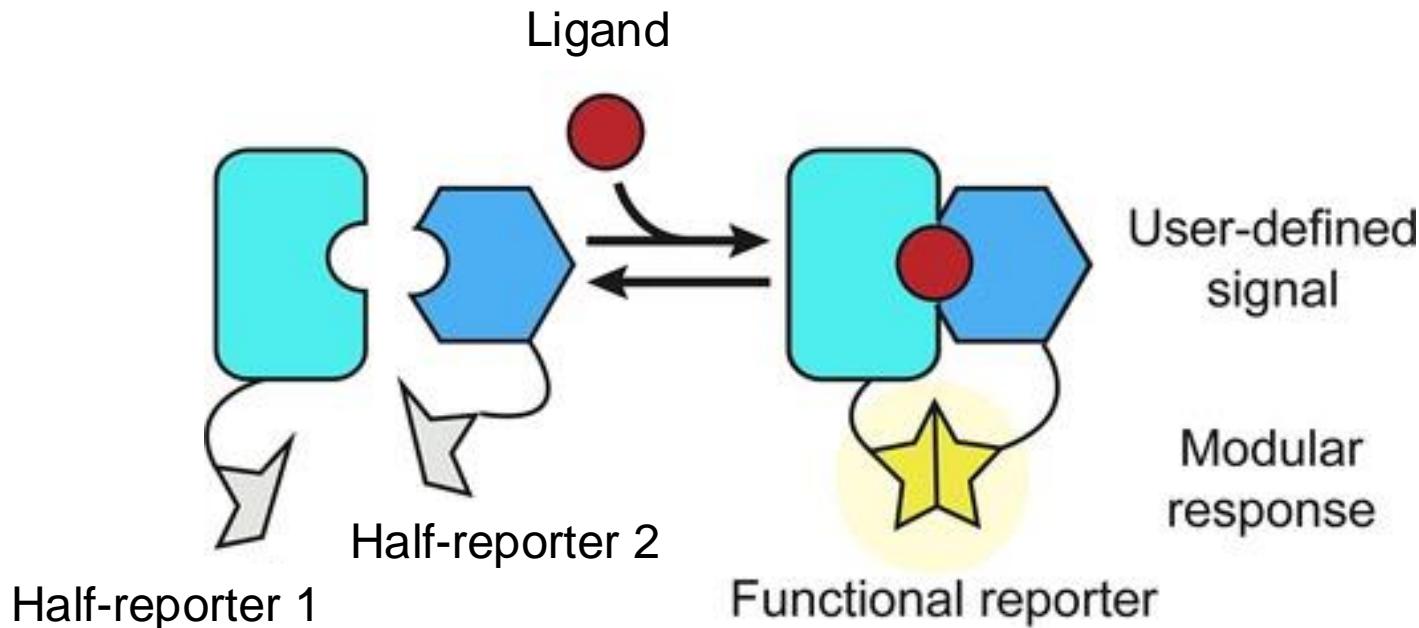
Ligand biosensor design

What is a biosensor?

What can it be useful for?

Why do we care?

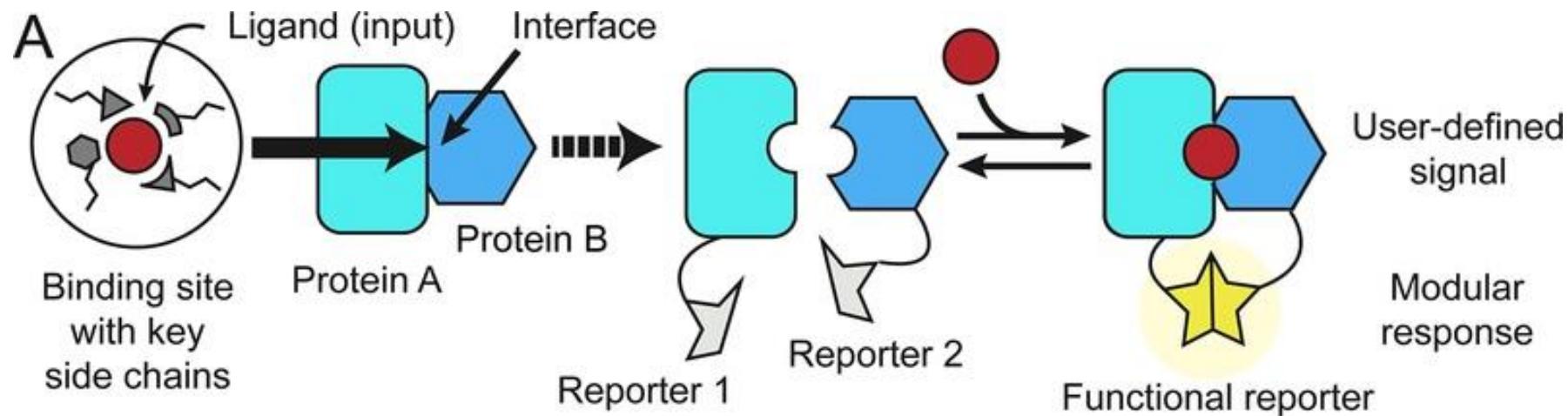
Ligand biosensor design



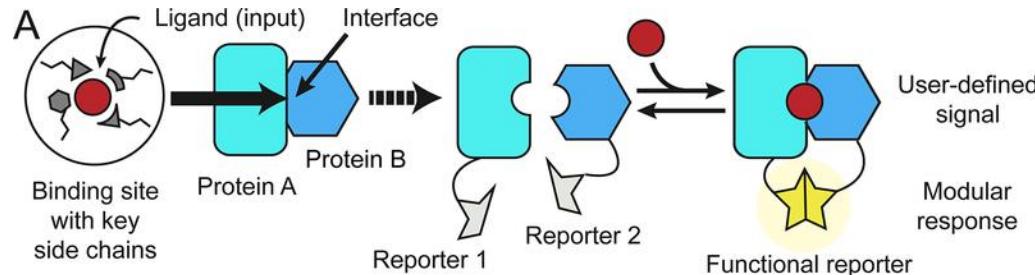
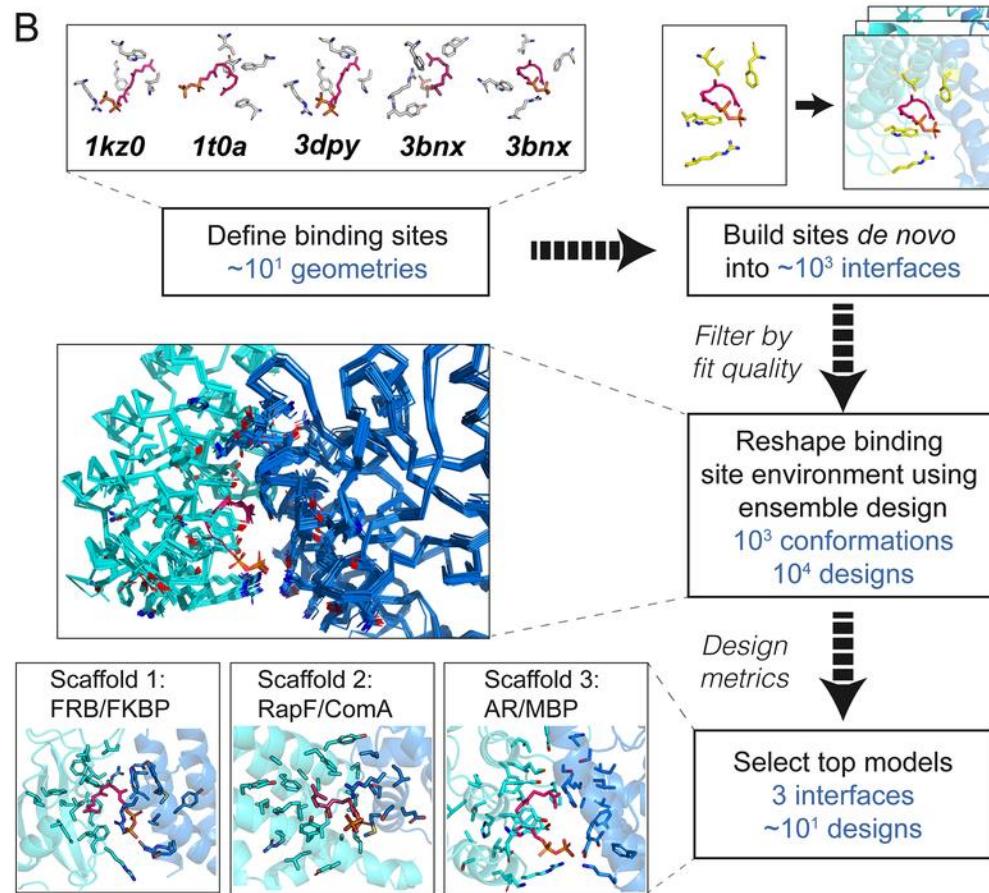
A wide range of applications

Diagnostics
Detection of contaminants
Data storage

Ligand biosensor design

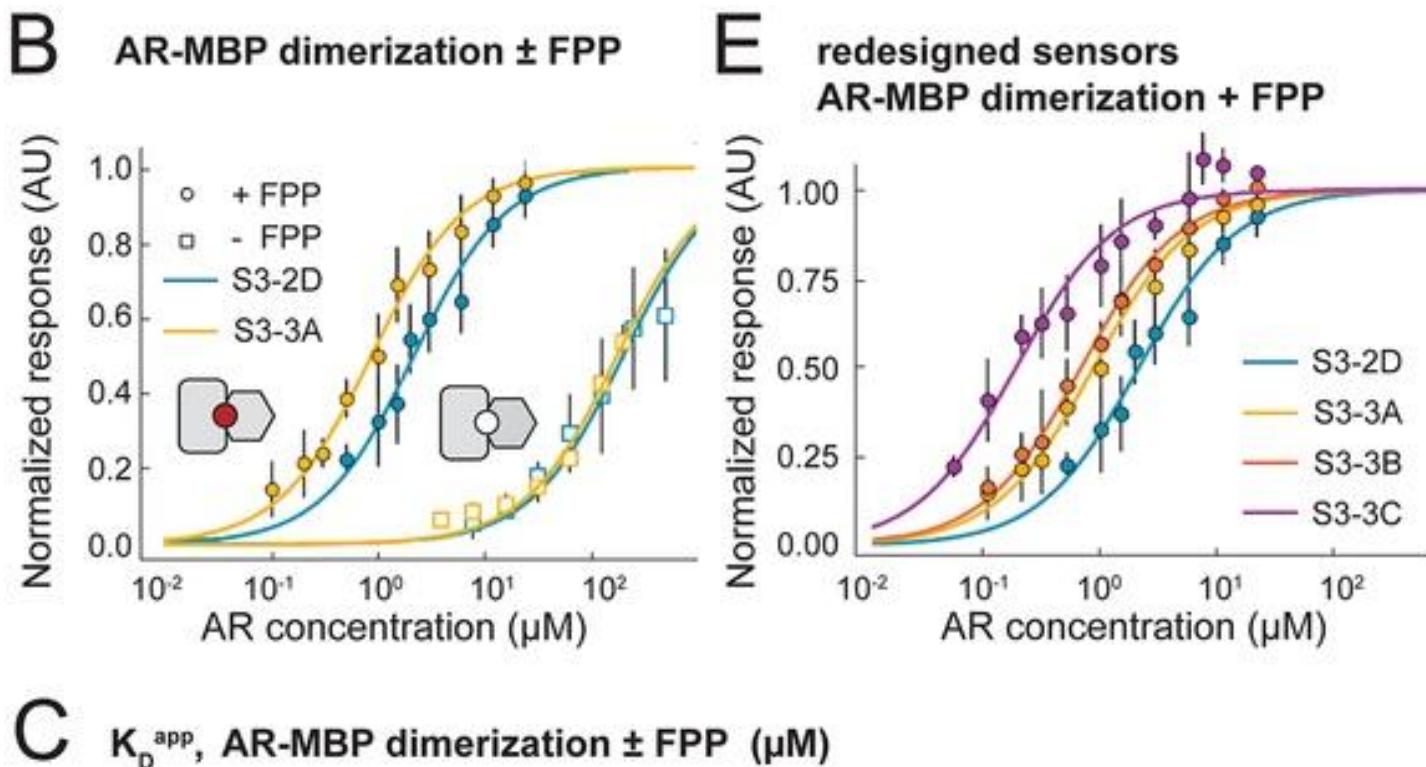


Ligand biosensor design



(Glasgow 2020)

Ligand biosensor design



C K_D^{app} , AR-MBP dimerization \pm FPP (μM)

	S3-2D	S3-3A	S3-3B	S3-3C
+FPP	2.1 ± 0.18	0.87 ± 0.06	0.67 ± 0.03	0.17 ± 0.02
-FPP	$>200^{\#}$	$>200^{\#}$	14.0 ± 1.09	6.16 ± 0.31
Fold change	>100	>200	20.8	36.2

low estimate

Ligand biosensor design

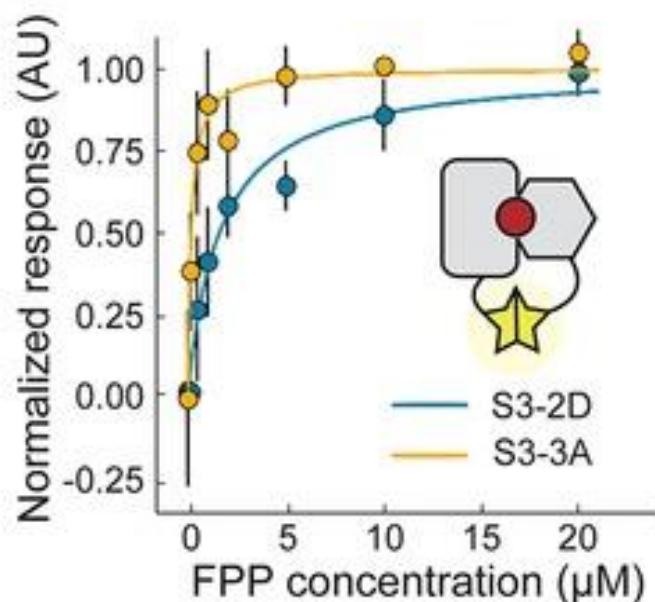
D K_D , FPP binding to AR or MBP (μM)

S3-2D AR	6.1 ± 1.4
S3-2D MBP	$>1000^{\#}$

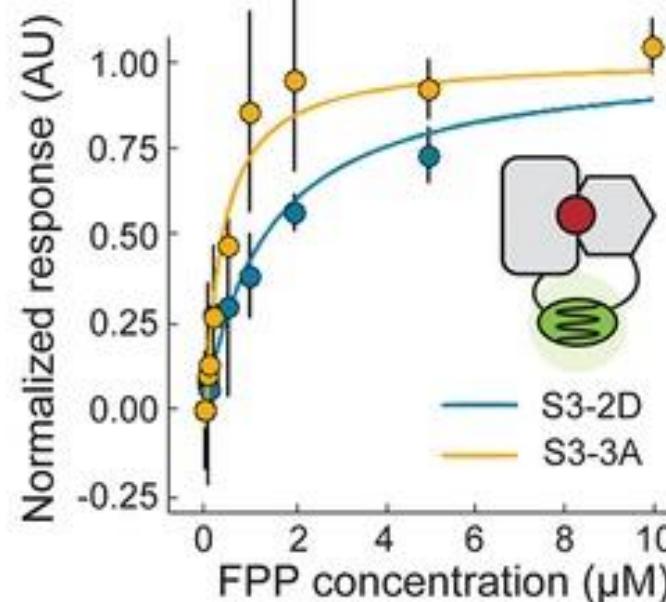
F K_D^{app} , FPP sensitivity of sensors (μM)

	S3-2D	S3-3A
Luminescence	1.6 ± 0.47	0.18 ± 0.05
Fluorescence	1.4 ± 0.50	0.33 ± 0.13

G Luminescence reporter

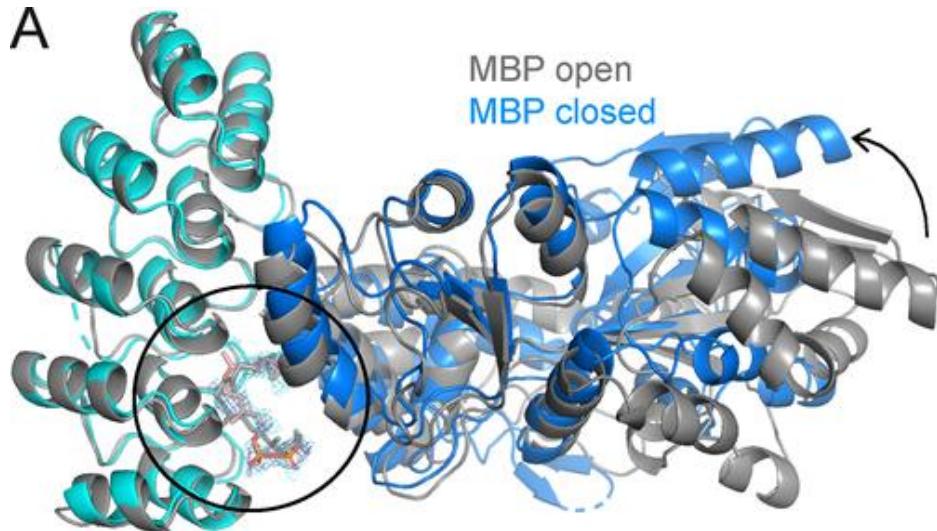


H Fluorescence reporter

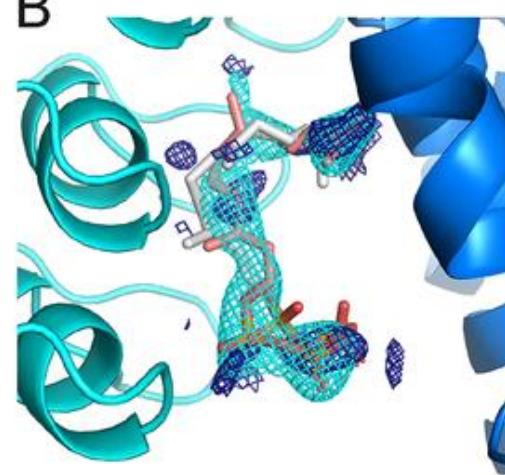


Ligand biosensor design

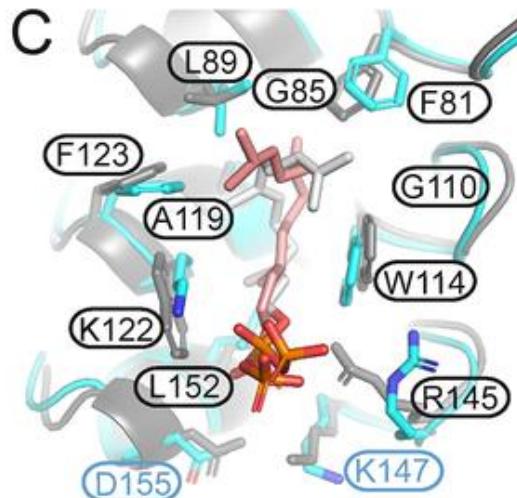
A



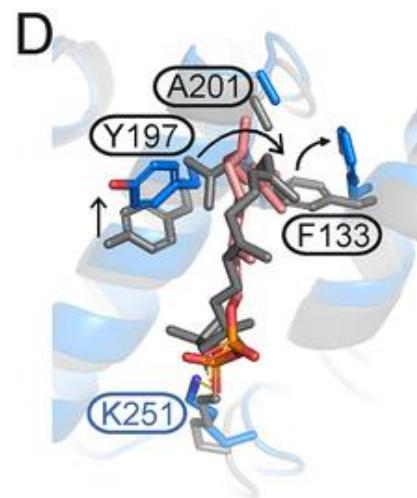
B



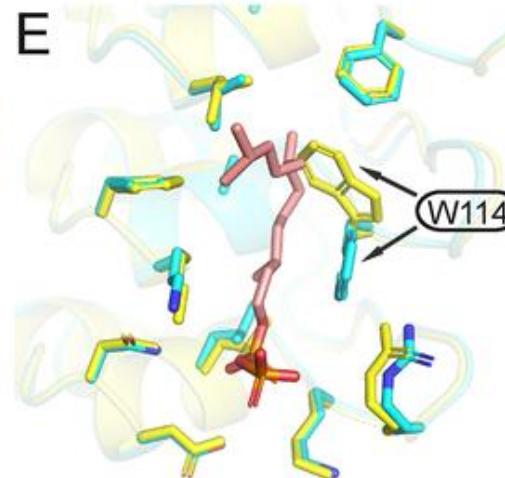
C



D



E



S3-2D
design model

S3-2D AR
crystal structure

S3-2D MBP
crystal structure

S3-2D FPP
crystal structure

S3-2D Apo
crystal structure

Ligand biosensor design

Have they solved the biosensor design problem?

Where do you see key limitations?

What could be the next steps?

Take home messages

1. Protein binding vs folding differences (interactions, conformational space)
2. Solutions for binding site design (starting from precise ligand conformation)
3. Computational design solutions are often suboptimal. Need time-consuming optimization by directed evolution
4. AI-based methods are emerging that can create protein scaffolds stabilizing precise ligand structures