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Design of protein binding
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Protein Design — the binding problem
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Figure 1.2 The Molecules of Life (© Garland Science 2013)
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Protein Design — the binding problem

Protein-ligand interactions
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Similar forces than during protein folding:

1. Desolvation of 2 protein surfaces

2. Creation of hydrophobic and polar
interactions at the binding interface

Balance between 1 and 2 will dictate
the strength of binding

=> Protein surface complementarity
and surface areas are key!

Buried cavity Flat binding surface
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Protein binding —a conformational flexibility

problem
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Free energy

Protein binding — a kinetic problem
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Protein docking: prediction of binding complexes

Collisional
Encounter

Encounter Complex
Formation
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Rigid body degrees
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De novo design of ligand binding

Step 1.

Pre-defined optimal
binding interactions
between ligand &
residue side-chains

Co atom

Step 3:
Matching and grafting of ligand-binding
residues onto a protein scaffold

Step 2:

Inverse rotamer
generation from
ligand-side-chain
contacts




Protein Design — Examples overview

[1.De novo protein functional foIdJ

2.Enzyme

3.Ligand biosensor design



Design of new functional folds:
fluorescence activating beta barrel

The beta barrel
scaffold

Ideal for ligand binding

(Dou et al., Nature 2018)



Design of new functional folds:
fluorescence activating beta barrel

Residue connectivity

3D ideal ‘ m

geometry !g
parametrization ’
using an equation for /‘
an elliptic hyperboloid
of revolution \/

No
folded
designs !
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(Dou et al., Nature 2018)



Design of new functional folds:

fluorescence activating beta barrel

b Residue connectivity

v

3D geometry

A .
Steric
repulsion

Gly kink

Beta bulge
Gly kink

~  Repulsion

(Dou et al., Nature 2018)



Design of new functional folds:
fluorescence activating beta barrel

’/

Closest nétie

structures

(Dou et al., Nature 2018)



Design of new functional folds

Barrel design with ligand binding cavity

(Dou et al., Nature 2018)



Fluorescence Intensity/10* (CP

Design of new functional folds
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Design of new functional folds

GFP design

Comparison with
naturally evolved GFP

(Dou et al., Nature 2018)



Take home messages

1. De novo design of beta barrels is challenging

2. Are the Gly kink bulge rules universal and applicable for
all barrels?

3. Precise ligand binding is possible when starting from a
hyperstable and rigid scaffold: destabilizing ligand binding
cavity carved into a large hydrophobic stabilizing core

(Dou et al., Nature 2018)



Protein Design — Examples overview

1.De novo protein functional fold

{Z.EnzymeJ

3.Ligand biosensor design



Design of a novel enzyme

* Goal: design artificial
enzymes that catalyze
unnatural reactions

* Enzymes:

— lower the activation barrier,
by

— stabilizing transition state
— shielding reactants

Roethlisberger et al. 2008; Liang et al., 2008



Design of a novel enzyme

Roethlisberger et al. 2008; Liang et al., 2008

Enzyme + Substrate --> [ E-T ] --> Enzyme + Product

Energy 1

[E-T]

E+S

E+P



Design of a novel enzyme

Roethlisberger et al. 2008; Liang et al., 2008

— Uncatalysed
— Enzyme-catalysed

Transiton .
- state."_.,....... Theozyme
' design
AGuncat
" Docking :
(for example, Y
RosettaMatch)
Enzyme
transition-state ,
a complex \a<;
2 Repacking
- (for example,
RosettaDesign)
EP P

: : g Initial design
Reaction coordinate



Design of a novel enzyme

Roethlisberger et al. 2008; Liang et al., 2008

Transition State (TS) + functional groupsi List of protein scaffolds A p p roac h )
I ¥ 1. Model transition state
Description of catalytic constraints Identification of potential binding pocket 0 f reac th N (QM )

]

2. Stabilize with carefully

STEP 1: Geometry-based identification

placed chemical groups

-

Generation of the “inverse rotamer tree”

around it

Search based on hashing
l of TS model rigid-body orientation

Search based on hashing of
backbone coordinates

3. Graft resulting active site

into an existing protein

4. Alter the sequence of the

STEP 2: Optimization of TS position and catalytic side-chains

'

STEP 3: Design of remaining residues for high affinity binding

'

STEP 4: Ranking based on binding energy and catalytic geometry

protein to accommodate

the active site




Model transition state

Kemp Eliminati . 0T AT
* Kemp Elimination ozr«g@ om@\ 02~C(0N
& 0‘":- — o

HX

s <

e Water mediated

Model transition state



Search for Template

* |nside-out: * RosettaMatch: Outside-in:
— Build inverse rotamer — Place side chains and
tree starting from transition state model at
catalytic site each position
— Search for fitting — Search for transition state
backbone templates model orientations that fit
(geometric hashing) several positions
\ ’,g;,'/._;,,,*”‘
Q cO ;._f ‘,-:;-\
r\\\ \



Find match




Validation 1: enzyme is active
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Validation 2: accurate structure
prediction




Is this all?

Is the enzyme designh problem
solved?

Designed HG3: k_,; ~ 1 s

Native kemp eliminases: k., ~ 400-500 s-1



Precision is essential for efficient
catalysis in an evolved Kemp
eliminase (Blomberg, Nature 2014)
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Directed evolution of Kemp
eliminase HG3 (somberg, Nature 2014)

Computational design: HG3 Directed evolution: HG3.17




Crystal structure of HG3.17 (siomberg,

Nature 2014)

LThr 265




Catalytic improvement of HG3
(Blomberg, Nature 2014)

Elimination of a Efficient proton Optimal TS
on unproductive transfer stabilization
binding mode

a Ginso b GIn 50 €  GIn50




Take home messages

Computational
de novo design
Starting
iInert
scaffold

Limited space
of de novo
functions!

Evolution: Nature’s
own optimization

First strategy o
generation Optimized
De novo Function
function

Time consuming
and costly !



A road map to better enzymes

Fully programmable catalysis

—® @ @ 4 &

Idea

Designs with enyzme-like efficiencies

d
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theozymes scaffolds force fields learning functionalities design



One future direction: non canonical AA for
expanded chemical space
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De novo design of luciferases using deep learning

Each protein structure

Is characterized

by a matrix of
residue-residue contacts

Neural networks learn
these contact patterns

100

Residue index
50

0 50 100
Residue index



De novo design of luciferases using deep learning

a Structure prediction
: . Sharp , _
A;g'n'.?e?]g'g — —— > |distance —> F /
9 map g
Structure- 3D
prediction network structure
b Protein design by network hallucination

Random Blurry Sharp .
amino acid distance distance}l——> ¢ y
sequence w map b
3D

MCMC sequence optimization structure



De novo design of luciferases using deep learning

b Protein design by network hallucination
Random Blurry Sharp F \
amino acid distance distance|——> ¢ 4
sequence w map b
3D
MCMC sequence optimization structure

MCMC step 0 1000 5000 10000 40000

0 50 100
Residue index

Residue index

0 1

Predicted probability of
Cy—Cy distance <10 A



De novo design of luciferases using deep learning

MCMC Conserved Variable Neural
update ' L : network

Loss function

- Fold loss
- Hallucination

Final scaffold




De novo design of luciferases using deep learning
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Take home messages

Evolution: Nature’s

Computational n: Nat
de novo design own optimization
Starting First | strategy o
inert — 9ENETAUON . Optimized
scaffold De novo Function
function

Deep learning
Artificial chemistry

Many others



Enzyme Design for

Arzeda. |,

THE PROTEIN
DESIGN COMPANY”
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a more sustainable world

Arzeda is harnessing the power of
computational protein design to build novel
enzymes and discover new pathways that
enable cost effective, sustainable production of
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iIngredients
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Protein Design — Examples overview

1.De novo protein functional fold

2.Enzyme

[3.Ligand biosensor design J




Ligand biosensor design

What is a biosensor?
What can it be useful for?

Why do we care?



Ligand biosensor design

Ligand

\ User-defined
; signal

Modular
response

Half-reporter 2
Half-reporter 1 Functional reporter

A wide range of applications

Diagnostics
Detection of contaminants
Data storage



A Ligand (input) Interface

Binding site
with key
side chains

Ligand biosensor design

Protein A

Reporter 2

User-defined

signal

Modular
response

Reporter 1 Functional reporter

(Glasgow 2020)



Ligand biosensor design

A Ligand (input) Interface ‘
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(Glasgow 2020)



B AR-MBP dimerization £ FPP

Ligand biosensor design

E redesigned sensors

AR-MBP dimerization + FPP
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Ligand biosensor design

D K,, FPP binding F K,**, FPP sensitivity of sensors (uM)
to AR or MBP (uM)
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Ligand biosensor design

S3-2D
design model

MBP open

S3-2D AR
crystal structure

MBP closed

S3-2D MBP S3-2D FPP
crystal structure crystal structure

S3-2D Apo
crystal structure

(Glasgow 2020)



Ligand biosensor design

Have they solved the biosensor design problem?
Where do you see key limitations?

What could be the next steps?

(Glasgow 2020)



Take home messages

1. Protein binding vs folding differences (interactions,
conformational space)

2. Solutions for binding site design (starting from precise ligand
conformation)

3. Computational design solutions are often suboptimal. Need
time-consuming optimization by directed evolution

4. Al-based methods are emerging that can create protein
scaffolds stabilizing precise ligand structures
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